scispace - formally typeset
Search or ask a question
Author

Pierre Montay-Gruel

Bio: Pierre Montay-Gruel is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Flash (photography) & Radiation therapy. The author has an hindex of 9, co-authored 19 publications receiving 696 citations. Previous affiliations of Pierre Montay-Gruel include Université Paris-Saclay & University Hospital of Lausanne.

Papers
More filters
Journal ArticleDOI
TL;DR: The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.
Abstract: Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy⋅s−1). Compared with conventional dose-rate (CONV; 0.07–0.1 Gy⋅s−1) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.

277 citations

Journal ArticleDOI
TL;DR: The main data supporting the clinical translation of FLASH-RT is summarized, the key irradiation parameters and the potential technologies needed for a successful clinical translation are explored and its feasibility is explored.

255 citations

Journal ArticleDOI
TL;DR: Results show that a 10 Gy whole-brain irradiation delivered at ultra-high dose-rate with synchrotron generated X-rays does not induce memory deficit; it reduces hippocampal cell-division impairment and induces less reactive astrogliosis.

219 citations

Journal ArticleDOI
TL;DR: The present results show that FLASH-RT delivered with hypofractionated regimens is able to spare the normal brain from radiation-induced toxicities without compromising tumor cure, and provides an initial framework for future clinical applications of FLash-RT.
Abstract: Purpose: Recent data have shown that single-fraction irradiation delivered to the whole brain in less than tenths of a second using FLASH radiotherapy (FLASH-RT), does not elicit neurocognitive deficits in mice. This observation has important clinical implications for the management of invasive and treatment-resistant brain tumors that involves relatively large irradiation volumes with high cytotoxic doses. Experimental Design: Therefore, we aimed at simultaneously investigating the antitumor efficacy and neuroprotective benefits of FLASH-RT 1-month after exposure, using a well-characterized murine orthotopic glioblastoma model. As fractionated regimens of radiotherapy are the standard of care for glioblastoma treatment, we incorporated dose fractionation to simultaneously validate the neuroprotective effects and optimized tumor treatments with FLASH-RT. Results: The capability of FLASH-RT to minimize the induction of radiation-induced brain toxicities has been attributed to the reduction of reactive oxygen species, casting some concern that this might translate to a possible loss of antitumor efficacy. Our study shows that FLASH and CONV-RT are isoefficient in delaying glioblastoma growth for all tested regimens. Furthermore, only FLASH-RT was found to significantly spare radiation-induced cognitive deficits in learning and memory in tumor-bearing animals after the delivery of large neurotoxic single dose or hypofractionated regimens. Conclusions: The present results show that FLASH-RT delivered with hypofractionated regimens is able to spare the normal brain from radiation-induced toxicities without compromising tumor cure. This exciting capability provides an initial framework for future clinical applications of FLASH-RT. See related commentary by Huang and Mendonca, p. 662

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence demonstrating that TLSs are critical for generating antitumour immune responses and are associated with better prognosis in certain cancer types is described and potential strategies aimed at inducing TLS neogenesis to improve clinical responses in poorly immunogenic cancers are presented.
Abstract: Tertiary lymphoid structures (TLSs) are ectopic lymphoid organs that develop in non-lymphoid tissues at sites of chronic inflammation including tumours. Key common characteristics between secondary lymphoid organogenesis and TLS neogenesis have been identified. TLSs exist under different maturation states in tumours, culminating in germinal centre formation. The mechanisms that underlie the role of TLSs in the adaptive antitumour immune response are being deciphered. The description of the correlation between TLS presence and clinical benefit in patients with cancer, suggesting that TLSs could be a prognostic and predictive factor, has drawn strong interest into investigating the role of TLSs in tumours. A current major challenge is to exploit TLSs to promote lymphocyte infiltration, activation by tumour antigens and differentiation to increase the antitumour immune response. Several approaches are being developed using chemokines, cytokines, antibodies, antigen-presenting cells or synthetic scaffolds to induce TLS formation. Strategies aiming to induce TLS neogenesis in immune-low tumours and in immune-high tumours, in this case, in combination with therapeutic agents dampening the inflammatory environment and/or with immune checkpoint inhibitors, represent promising avenues for cancer treatment.

702 citations

Journal ArticleDOI
TL;DR: The results confirmed the potential advantage of FLASH-RT and provide a strong rationale for further evaluating FLash-RT in human patients.
Abstract: Purpose: Previous studies using FLASH radiotherapy (RT) in mice showed a marked increase of the differential effect between normal tissue and tumors. To stimulate clinical transfer, we evaluated whether this effect could also occur in higher mammals. Experimental Design: Pig skin was used to investigate a potential difference in toxicity between irradiation delivered at an ultrahigh dose rate called “FLASH-RT” and irradiation delivered at a conventional dose rate called “Conv-RT.” A clinical, phase I, single-dose escalation trial (25–41 Gy) was performed in 6 cat patients with locally advanced T2/T3N0M0 squamous cell carcinoma of the nasal planum to determine the maximal tolerated dose and progression-free survival (PFS) of single-dose FLASH-RT. Results: Using, respectively, depilation and fibronecrosis as acute and late endpoints, a protective effect of FLASH-RT was observed (≥20% dose-equivalent difference vs. Conv-RT). Three cats experienced no acute toxicity, whereas 3 exhibited moderate/mild transient mucositis, and all cats had depilation. With a median follow-up of 13.5 months, the PFS at 16 months was 84%. Conclusions: Our results confirmed the potential advantage of FLASH-RT and provide a strong rationale for further evaluating FLASH-RT in human patients. See related commentary by Harrington, p. 3

403 citations

Journal ArticleDOI
TL;DR: This first FLash-RT treatment was feasible and safe with a favorable outcome both on normal skin and the tumor, and prompt to further clinical evaluation of FLASH-RT.

340 citations

Journal ArticleDOI
TL;DR: The current knowledge about the FLASH effect is summarized and a synthesis of the observations that have been reported on various experimental animal models, various organs, and by various groups across 40 years of research are provided.

285 citations

Journal ArticleDOI
TL;DR: The tissue response to FLASH radiotherapy is examined, the evidence supporting hypotheses surrounding the biological basis of the FLASH effect is critically evaluated, and the potential for FLash radiotherapy to be translated into clinical contexts is considered.
Abstract: Radiotherapy is a cornerstone of both curative and palliative cancer care. However, radiotherapy is severely limited by radiation-induced toxicities. If these toxicities could be reduced, a greater dose of radiation could be given therefore facilitating a better tumor response. Initial pre-clinical studies have shown that irradiation at dose rates far exceeding those currently used in clinical contexts reduce radiation-induced toxicities whilst maintaining an equivalent tumor response. This is known as the FLASH effect. To date, a single patient has been subjected to FLASH radiotherapy for the treatment of subcutaneous T-cell lymphoma resulting in complete response and minimal toxicities. The mechanism responsible for reduced tissue toxicity following FLASH radiotherapy is yet to be elucidated, but the most prominent hypothesis so far proposed is that acute oxygen depletion occurs within the irradiated tissue. This review examines the tissue response to FLASH radiotherapy, critically evaluates the evidence supporting hypotheses surrounding the biological basis of the FLASH effect, and considers the potential for FLASH radiotherapy to be translated into clinical contexts.

279 citations