scispace - formally typeset
Search or ask a question
Author

Pierre Sokoloff

Bio: Pierre Sokoloff is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Dopamine receptor D3 & Dopamine receptor D2. The author has an hindex of 69, co-authored 184 publications receiving 18164 citations. Previous affiliations of Pierre Sokoloff include Goethe University Frankfurt & University of Rouen.


Papers
More filters
Journal ArticleDOI
13 Sep 1990-Nature
TL;DR: The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions, and seems to mediate some of the effects of antipsychotic drugs and drugs used against Parkinson's disease.
Abstract: A dopamine receptor has been characterized which differs in its pharmacology and signalling system from the D1 or D2 receptor and represents both an autoreceptor and a postsynaptic receptor The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions It seems to mediate some of the effects of antipsychotic drugs and drugs used against Parkinson's disease, that were previously thought to interact only with D2 receptors

2,627 citations

Journal ArticleDOI
TL;DR: D2 and D3 receptor mRNAs were also detected at the level of the substantia nigra, suggesting that these receptors function as both autoreceptor and postsynaptic receptors, the latter being most abundant in dopaminergic areas known to be associated with cognitive and emotional functions.

871 citations

Journal ArticleDOI
21 Dec 1989-Nature
TL;DR: It is shown that the gene for the D2 receptor produces two receptor isoforms by alternative messenger RNA splicing, providing a route to receptor diversity in this family of receptors.
Abstract: Dopamine receptors are classified into D1 and D2 subtypes on the basis of their pharmacological properties and the intracellular responses they mediate. The cerebral D2 dopamine receptor is the target of drugs used to alleviate the main symptoms of schizophrenia. Although it is considered to be a single molecular entity, there is evidence that multiple D2-receptor subtypes exist. A complementary DNA encoding a D2 receptor has recently been cloned and the deduced 415-amino-acid sequence indicates that it belongs to the large superfamily of receptors coupled to G proteins, and that its topology consists of seven transmembrane domains. In this family, the genes are frequently without introns and each is believed to encode a unique polypeptide product. Here we show that the gene for the D2 receptor produces two receptor isoforms by alternative messenger RNA splicing, providing a route to receptor diversity in this family. One isoform corresponds to the D2(415) receptor, but the second contains an additional sequence encoding a 29-amino-acid fragment, defining a novel D2(444) receptor isoform. Expression of the two isoforms is tissue-specific, and both are regulated by guanyl nucleotides. As the extra sequence is located within a putative cytoplasmic loop that binds to G proteins, the two isoforms might interact with different G proteins and thereby initiate distinct intracellular signals.

705 citations

Journal ArticleDOI
TL;DR: Native D3 receptors in brain are characterized by an unusually high nanomolar affinity for dopamine and a low modulatory influence of guanyl nucleotides on agonist binding, which suggest that D3 receptor are involved in a peculiar mode of neurotransmission in a restricted subpopulation of dopamine neurons.
Abstract: We have identified 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin ([3H]7-OH-DPAT) as a selective probe for the recently cloned dopamine D3 receptor and used it to assess the presence of this receptor and establish its distribution and properties in brain. In transfected Chinese hamster ovary (CHO) cells, it binds to D3 receptors with subnanomolar affinity, whereas its affinity is approximately 100-, 1000-, and 10,000-fold lower at D2, D4, and D1 receptors, respectively. Specific [3H]7-OH-DPAT binding sites, with a Kd of 0.8 nM and a pharmacology similar to those at reference D3 receptors of CHO cells, were identified in rat brain. D3 receptors differ from D2 receptors in brain by their lower abundance (2 orders of magnitude) and distribution, restricted to a few mainly phylogenetically ancient areas--e.g., paleostriatum and archicerebellum--as evidenced by membrane binding are autoradiography studies. Native D3 receptors in brain are characterized by an unusually high nanomolar affinity for dopamine and a low modulatory influence of guanyl nucleotides on agonist binding. These various features suggest that D3 receptors are involved in a peculiar mode of neurotransmission in a restricted subpopulation of dopamine neurons.

672 citations

Journal ArticleDOI
22 Jul 1999-Nature
TL;DR: BP 897 inhibits cocaine-seeking behaviour that depends upon the presentation of drug-associated cues, without having any intrinsic, primary rewarding effects, which indicates that compounds like BP 897 could be used for reducing the drug craving and vulnerability to relapse that are elicited by drug- associated environmental stimuli.
Abstract: Environmental stimuli that are reliably associated with the effects of many abused drugs, especially stimulants such as cocaine, can produce craving and relapse in abstinent human substance abusers. In animals, such cues can induce and maintain drug-seeking behaviour and also reinstate drug-seeking after extinction. Reducing the motivational effects of drug-related cues might therefore be useful in the treatment of addiction. Converging pharmacological, human post-mortem and genetic studies implicate the dopamine D3 receptor in drug addiction. Here we have designed BP 897, the first D3-receptor-selective agonist, as assessed in vitro with recombinant receptors and in vivo with mice bearing disrupted D3-receptor genes. BP 897 is a partial agonist in vitro and acts in vivo as either an agonist or an antagonist. We show that BP 897 inhibits cocaine-seeking behaviour that depends upon the presentation of drug-associated cues, without having any intrinsic, primary rewarding effects. Our data indicate that compounds like BP 897 could be used for reducing the drug craving and vulnerability to relapse that are elicited by drug-associated environmental stimuli.

566 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is suggested that dopamine may be more important to incentive salience attributions to the neural representations of reward-related stimuli and is a distinct component of motivation and reward.

3,833 citations

Journal ArticleDOI
TL;DR: Target deletion of several of these dopamine receptor genes in mice should provide valuable information about their physiological functions and provide unequivocal evidence for the involvement of one of these receptors in the etiology of various central nervous system disorders.
Abstract: Missale, Cristina, S. Russel Nash, Susan W. Robinson, Mohamed Jaber, and Marc G. Caron. Dopamine Receptors: From Structure to Function. Physiol. Rev. 78: 189–225, 1998. — The diverse physiological actions of dopamine are mediated by at least five distinct G protein-coupled receptor subtypes. Two D1-like receptor subtypes (D1 and D5) couple to the G protein Gs and activate adenylyl cyclase. The other receptor subtypes belong to the D2-like subfamily (D2 , D3 , and D4) and are prototypic of G protein-coupled receptors that inhibit adenylyl cyclase and activate K+ channels. The genes for the D1 and D5 receptors are intronless, but pseudogenes of the D5 exist. The D2 and D3 receptors vary in certain tissues and species as a result of alternative splicing, and the human D4 receptor gene exhibits extensive polymorphic variation. In the central nervous system, dopamine receptors are widely expressed because they are involved in the control of locomotion, cognition, emotion, and affect as well as neuroendocrine s...

3,433 citations

Journal ArticleDOI
10 Jan 1997-Cell
TL;DR: The data identify a novel signaling pathway in the mouse for body weight regulation and support a model in which the primary mechanism by which agouti induces obesity is chronic antagonism of the MC4-R.

2,979 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: The view that addiction is the pathology that results from an allostatic mechanism using the circuits established for natural rewards provides a realistic approach to identifying the neurobiological factors that produce vulnerability to addiction and relapse.

2,678 citations