scispace - formally typeset
Search or ask a question
Author

Pierre Suquet

Bio: Pierre Suquet is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Nonlinear system & Homogenization (chemistry). The author has an hindex of 39, co-authored 99 publications receiving 7483 citations. Previous affiliations of Pierre Suquet include Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: An alternate method based on Fourier series which avoids meshing and which makes direct use of microstructure images is proposed, based on the exact expression of the Green function of a linear elastic and homogeneous comparison material.

1,170 citations

Journal ArticleDOI
TL;DR: In this paper, two different families of numerical methods are considered to solve the problem of a homogeneous linear reference material undergoing a nonhomogeneous periodic eigenstrain, and the relative merits of the two methods are compared and several examples are discussed.

1,028 citations

01 Apr 1994
TL;DR: In this article, the elastic problem for a heterogeneous material is formulated with the help of a homogeneous reference medium and written under the form of a periodic Lippman-Schwinger equation.
Abstract: This Note is devoted to a new iterative algorithm to compute the local and overall response of a composite from images of its (complex) microstructure. The elastic problem for a heterogeneous material is formulated with the help of a homogeneous reference medium and written under the form of a periodic Lippman-Schwinger equation. Using the fact that the Green's function of the pertinent operator is known explicitely in Fourier space, this equation is solved iteratively.The method is extended to the case where the individual constituents are elastic-plastic Von Mises materials with isotropic hardening

427 citations

Journal ArticleDOI
TL;DR: In this paper, two modified fast Fourier transform methods were proposed to handle composites with high contrast (typically above 104) or infinite contrast (those containing voids or rigid inclusions or highly non-linear materials).
Abstract: A numerical method making use of fast Fourier transforms has been proposed in Moulinec and Suquet (1994, 1998) to investigate the effective properties of linear and non-linear composites. This method is based on an iterative scheme the rate of convergence of which is proportional to the contrast between the phases. Composites with high contrast (typically above 104) or infinite contrast (those containing voids or rigid inclusions or highly non-linear materials) cannot be handled by the method. This paper presents two modified schemes. The first one is an accelerated scheme for composites with high contrast which extends to elasticity a scheme initially proposed in Eyre and Milton (1999). Its rate of convergence varies as the square root of the contrast. The second scheme, adequate for composites with infinite contrast, is based on an augmented Lagrangian method. The resulting saddle-point problem involves three steps. The first step consists of solving a linear elastic problem, using the fast Fourier transform method. In the second step, a non-linear problem is solved at each individual point in the volume element. The third step consists of updating the Lagrange multiplier. Applications of this scheme to rigidly reinforced and to voided composites are shown. Copyright © 2001 John Wiley & Sons, Ltd.

398 citations

Book
01 Jun 1997

374 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a quantitative definition of the representative volume element (RVE) size is proposed, which can be associated with a given precision of the estimation of the overall property and the number of realizations of a given volume V of microstructure that one is able to consider.

1,772 citations

Journal ArticleDOI
TL;DR: In this paper, a review of continuum-based variational formulations for describing the elastic-plastic deformation of anisotropic heterogeneous crystalline matter is presented and compared with experiments.

1,573 citations

Journal ArticleDOI
TL;DR: In this article, the effective mechanical properties of the octet-truss lattice structured material have been investigated both experimentally and theoretically, and the intervention of elastic buckling of the struts is also analysed in an approximate manner.
Abstract: The effective mechanical properties of the octet-truss lattice structured material have been investigated both experimentally and theoretically. Analytical and FE calculations of the elastic properties and plastic yielding collapse surfaces are reported. The intervention of elastic buckling of the struts is also analysed in an approximate manner. Good agreement is found between the predictions of the strength and experimental observations from tests on the octet-truss material made from a casting aluminium alloy. Moreover, the strength and stiffness of the octet-truss material are stretching-dominated and compare favourably with the corresponding properties of metallic foams. Thus, the octet-truss lattice material can be considered as a promising alternative to metallic foams in lightweight structures.

1,260 citations

Journal ArticleDOI
TL;DR: An alternate method based on Fourier series which avoids meshing and which makes direct use of microstructure images is proposed, based on the exact expression of the Green function of a linear elastic and homogeneous comparison material.

1,170 citations

Journal ArticleDOI
TL;DR: In this paper, two different families of numerical methods are considered to solve the problem of a homogeneous linear reference material undergoing a nonhomogeneous periodic eigenstrain, and the relative merits of the two methods are compared and several examples are discussed.

1,028 citations