scispace - formally typeset
Search or ask a question
Author

Piers Klein

Bio: Piers Klein is an academic researcher from Boston University. The author has contributed to research in topics: Magnetic resonance imaging & Fondaparinux. The author has an hindex of 1, co-authored 2 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the clinical outcomes of patients selected for mechanical thrombectomy by noncontrast computed tomography (CT) vs those selected by computed tomogram perfusion (CTP) or magnetic resonance imaging (MRI) in the extended time window.
Abstract: Importance Advanced imaging for patient selection in mechanical thrombectomy is not widely available. Objective To compare the clinical outcomes of patients selected for mechanical thrombectomy by noncontrast computed tomography (CT) vs those selected by computed tomography perfusion (CTP) or magnetic resonance imaging (MRI) in the extended time window. Design, Setting, and Participants This multinational cohort study included consecutive patients with proximal anterior circulation occlusion stroke presenting within 6 to 24 hours of time last seen well from January 2014 to December 2020. This study was conducted at 15 sites across 5 countries in Europe and North America. The duration of follow-up was 90 days from stroke onset. Exposures Computed tomography with Alberta Stroke Program Early CT Score, CTP, or MRI. Main Outcomes and Measures The primary end point was the distribution of modified Rankin Scale (mRS) scores at 90 days (ordinal shift). Secondary outcomes included the rates of 90-day functional independence (mRS scores of 0-2), symptomatic intracranial hemorrhage, and 90-day mortality. Results Of 2304 patients screened for eligibility, 1604 patients were included, with a median (IQR) age of 70 (59-80) years; 848 (52.9%) were women. A total of 534 patients were selected to undergo mechanical thrombectomy by CT, 752 by CTP, and 318 by MRI. After adjustment of confounders, there was no difference in 90-day ordinal mRS shift between patients selected by CT vs CTP (adjusted odds ratio [aOR], 0.95 [95% CI, 0.77-1.17]; P = .64) or CT vs MRI (aOR, 0.95 [95% CI, 0.8-1.13]; P = .55). The rates of 90-day functional independence (mRS scores 0-2 vs 3-6) were similar between patients selected by CT vs CTP (aOR, 0.90 [95% CI, 0.7-1.16]; P = .42) but lower in patients selected by MRI than CT (aOR, 0.79 [95% CI, 0.64-0.98]; P = .03). Successful reperfusion was more common in the CT and CTP groups compared with the MRI group (474 [88.9%] and 670 [89.5%] vs 250 [78.9%]; P < .001). No significant differences in symptomatic intracranial hemorrhage (CT, 42 [8.1%]; CTP, 43 [5.8%]; MRI, 15 [4.7%]; P = .11) or 90-day mortality (CT, 125 [23.4%]; CTP, 159 [21.1%]; MRI, 62 [19.5%]; P = .38) were observed. Conclusions and Relevance In patients undergoing proximal anterior circulation mechanical thrombectomy in the extended time window, there were no significant differences in the clinical outcomes of patients selected with noncontrast CT compared with those selected with CTP or MRI. These findings have the potential to widen the indication for treating patients in the extended window using a simpler and more widespread noncontrast CT-only paradigm.

96 citations

Journal ArticleDOI
26 Jul 2021-Stroke
TL;DR: The vaccine-induced immune thrombocytopenia and anti-PF4 (antibodies directed against platelet factor 4) were reported in 17 patients out of 7.98 million recipients of the Ad26.COV2.S vaccine.
Abstract: In the spring of 2021, reports of rare and unusual venous thrombosis in association with the ChAdOx1 and Ad26.COV2.S adenovirus-based coronavirus vaccines led to a brief suspension of their use by several countries. Thromboses in the cerebral and splanchnic veins among patients vaccinated in the preceding 4 weeks were described in 17 patients out of 7.98 million recipients of the Ad26.COV2.S vaccine (with 3 fatalities related to cerebral vein thrombosis) and 169 cases of cerebral vein thrombosis among 35 million ChAdOx1 recipients. Events were associated with thrombocytopenia and anti-PF4 (antibodies directed against platelet factor 4), leading to the designation vaccine-induced immune thrombotic thrombocytopenia. Unlike the related heparin-induced thrombotic thrombocytopenia, with an estimated incidence of <1:1000 patients treated with heparin, and a mortality rate of 25%, vaccine-induced immune thrombotic thrombocytopenia has been reported in 1:150 000 ChAdOx1 recipients and 1:470 000 Ad26.COV.2 recipients, with a reported mortality rate of 20% to 30%. Early recognition of this complication should prompt testing for anti-PF4 antibodies and acute treatment targeting the autoimmune and prothrombotic processes. Intravenous immunoglobulin (1 g/kg for 2 days), consideration of plasma exchange, and nonheparin anticoagulation (argatroban, fondaparinux) are recommended. In cases of cerebral vein thrombosis, one should monitor for and treat the known complications of venous congestion as they would in patients without vaccine-induced immune thrombotic thrombocytopenia. Now that the Ad26.COV2.S has been reapproved for use in several countries, it remains a critical component of our pharmacological armamentarium in stopping the spread of the human coronavirus and should be strongly recommended to patients. At this time, the patient and community-level benefits of these two adenoviral vaccines vastly outweigh the rare but serious risks of vaccination. Due to the relatively low risk of severe coronavirus disease 2019 (COVID-19) in young women (<50 years), it is reasonable to recommend an alternative vaccine if one is available. Ongoing postmarketing observational studies are important for tracking new vaccine-induced immune thrombotic thrombocytopenia cases and other rare side effects of these emergent interventions.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mainstay of treatment remains intravenous thrombolysis with alteplase and may lyse large vessel clots more effectively as discussed by the authors , however, it has not demonstrated efficacy in prior clinical trials and it should be reconsidered as an adjunct to reperfusion.
Abstract: The treatment of acute ischemic stroke continues to advance. The mainstay of treatment remains intravenous thrombolysis with alteplase. Recent studies demonstrated that later treatment with alteplase is beneficial in patients selected with advanced imaging techniques. Tenecteplase has been evaluated as an alternative thrombolytic drug and evidence suggests that it is as least as effective as alteplase and may lyse large vessel clots more effectively. Endovascular therapy with mechanical thrombectomy has now been shown to be beneficial up to 24 hours after stroke onset in carefully selected patients with proximal, large vessel occlusions. Ongoing studies are evaluating the effectiveness of thrombectomy in patients with more distal vessel occlusions and patients with proximal large vessel occlusions with larger ischemic core volumes and also in patients with milder neurological deficits. Cytoprotection is another potential acute stroke therapy that has not demonstrated efficacy in prior clinical trials. It should be reconsidered as an adjunct to reperfusion and a variety of new clinical trials can be envisioned to evaluate the potential benefits of cytoprotection in patients before and after reperfusion.

29 citations

Journal ArticleDOI
TL;DR: In this paper , replication-defective adenoviral (Ad) vectors have demonstrated their utility as an outbreak-responsive vaccine platform during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic.

20 citations

Journal ArticleDOI
01 Sep 2022-Stroke
TL;DR: In this article , the authors proposed a tiered approach, where the boundaries of treatment beneficiaries can be more rigorously tested and confirmed, and used the same criteria, not to select some patients and exclude others, but to prespecify the subgroup of patients most likely to benefit.
Abstract: Since 2015, a series of endovascular trials transformed the management of patients with large vessel occlusion stroke. Most thrombectomy trials used restrictive eligibility criteria to optimize the chances of showing that thrombectomy could work. The problem arises when generalizing trial results into evidence-based recommendations. Many organizations, oblivious of this problem, translated verbatim restrictive trial eligibility criteria into authoritative guidelines, which limit the use of thrombectomy to highly selected patients. The clinical problem becomes as follows: what to do for all other stroke patients equally in need of care? The cycle of restrictive trial eligibility criteria, corresponding restrictive guidelines, observational studies of unvalidated practices showing other patients benefit, a new trial is needed, has been repeated often. Thrombectomy trials ought to have included all patients that could potentially benefit. If the signal that was looked for by restricting eligibility is at risk of being lost in the noise generated by the heterogeneity of patients, D. Sackett proposed a solution: to use the same criteria, not to select some patients and exclude others but to prespecify the subgroup of patients most likely to benefit. In this commentary, we propose a tiered approach, where the boundaries of treatment beneficiaries can be more rigorously tested and confirmed. Identification of these patients before the development of guidelines, which would have otherwise neglected these individuals, may open innumerable treatment opportunities to those who will instead be denied of them.

17 citations

Journal ArticleDOI
01 Dec 2022-Stroke
TL;DR: The CT for Late Endovascular Reperfusion (CLEAR) study as discussed by the authors was a multicenter, retrospective cohort study of stroke patients undergoing thrombectomy in the extended time window.
Abstract: Background: Reperfusion without functional independence (RFI) is an undesired outcome following thrombectomy in acute ischemic stroke. The primary objective was to evaluate, in patients presenting with proximal anterior circulation occlusion stroke in the extended time window, whether selection with computed tomography (CT) perfusion or magnetic resonance imaging is associated with RFI, mortality, or symptomatic intracranial hemorrhage (sICH) compared with noncontrast CT selected patients. Methods: The CLEAR study (CT for Late Endovascular Reperfusion) was a multicenter, retrospective cohort study of stroke patients undergoing thrombectomy in the extended time window. Inclusion criteria for this analysis were baseline National Institutes of Health Stroke Scale score ≥6, internal carotid artery, M1 or M2 segment occlusion, prestroke modified Rankin Scale score of 0 to 2, time-last-seen-well to treatment 6 to 24 hours, and successful reperfusion (modified Thrombolysis in Cerebral Infarction 2c–3). Results: Of 2304 patients in the CLEAR study, 715 patients met inclusion criteria. Of these, 364 patients (50.9%) showed RFI (ie, mRS score of 3–6 at 90 days despite successful reperfusion), 37 patients (5.2%) suffered sICH, and 127 patients (17.8%) died within 90 days. Neither imaging selection modality for thrombectomy candidacy (noncontrast CT versus CT perfusion versus magnetic resonance imaging) was associated with RFI, sICH, or mortality. Older age, higher baseline National Institutes of Health Stroke Scale, higher prestroke disability, transfer to a comprehensive stroke center, and a longer interval to puncture were associated with RFI. The presence of M2 occlusion and higher baseline Alberta Stroke Program Early CT Score were inversely associated with RFI. Hypertension was associated with sICH. Conclusions: RFI is a frequent phenomenon in the extended time window. Neither magnetic resonance imaging nor CT perfusion selection for mechanical thrombectomy was associated with RFI, sICH, and mortality compared to noncontrast CT selection alone. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT04096248.

17 citations

Journal ArticleDOI
TL;DR: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year, and a CO VID-19 diagnosis was associated with higher CVt in- hospital mortality.
Abstract: Background and Purpose Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.

12 citations