scispace - formally typeset
Search or ask a question
Author

Pietro Ferraro

Bio: Pietro Ferraro is an academic researcher from National Research Council. The author has contributed to research in topics: Digital holography & Holography. The author has an hindex of 61, co-authored 653 publications receiving 12666 citations. Previous affiliations of Pietro Ferraro include Aeritalia & Centre national de la recherche scientifique.


Papers
More filters
Proceedings ArticleDOI
TL;DR: An optical device allows visualizing how cataract impairs vision mimicking the optical degradation of the crystalline related cataracts, which can be a valuable optical tool for medical education as well as to provide a method to illustrate the patients howCataract progression process will affect their vision.
Abstract: As the world’s population ages, cataract-induced visual dysfunction and blindness is on the increase. This is a significant global problem. The most common symptoms of cataracts are glared and blurred vision. Usually, people with cataract have trouble seeing and reading at distance or in low light and also their color perception is altered. Furthermore, cataract is a sneaky disease as it is usually a very slow but progressive process, which creates adaptation so that patients find it difficult to recognize. All this can be very difficult to explain, so we built and tested an optical device to help doctors giving comprehensive answers to the patients’ symptoms. This device allows visualizing how cataract impairs vision mimicking the optical degradation of the crystalline related cataracts. This can be a valuable optical tool for medical education as well as to provide a method to illustrate the patients how cataract progression process will affect their vision.
Journal ArticleDOI
TL;DR: In this paper , the authors present a feature issue to follow the conclusion of the Optica Topical Meeting on Digital Holography and 3D Imaging (DH+3D).
Abstract: This feature issue is a continuation of a tradition to follow the conclusion of the Optica Topical Meeting on Digital Holography and 3D Imaging (DH+3D). It addresses current research topics in digital holography and 3D imaging that are also in line with the topics of Applied Optics and Journal of the Optical Society of America A.
Proceedings ArticleDOI
TL;DR: It is shown that dehydrating process can be effective for improving the phase-contrast in bioimaging, thus permitting a better observation of plant cells with the scope of learning more about cellular dynamics.
Abstract: We show that dehydrating process can be effective for improving the phase-contrast in bioimaging, thus permitting a better observation of plant cells with the scope of learning more about cellular dynamics.
Journal ArticleDOI
TL;DR: In this paper , the surface-enhanced Raman spectroscopy (SERS) performance of the pyro-electrohydrodynamic jet (p-jet) substrate was evaluated by using Rhodamine 6G (R6G) as a reference.
Abstract: The pyro-electrohydrodynamic jet (p-jet) printing technology has been used for the fabrication of confined assemblies of gold nanoparticles with a round shape and a diameter ranging between 100 and 200 μm. The surface-enhanced Raman spectroscopy (SERS) performance of the p-jet substrate was evaluated by using Rhodamine 6G (R6G) as a reference. The results demonstrate that this kind of SERS substrate exhibits strong plasmonic effects and a significant reproducibility of the signal with a coefficient of variation below 15%. We tested the signal behavior also in case of the bovine serum albumin (BSA) as a model analyte, to demonstrate the affinity with biomolecules. Strong SERS activity was measured also for BSA across the whole spot area. The spectral patterns collected in different locations of the sensing area were highly reproducible. This observation was substantiated by multivariate analysis of the imaging datasets and opens the route towards a potential application of this kind of SERS substrate in biosensing.

Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

01 Jan 2006

3,012 citations