scispace - formally typeset
Search or ask a question
Author

Pietro Ferraro

Bio: Pietro Ferraro is an academic researcher from National Research Council. The author has contributed to research in topics: Digital holography & Holography. The author has an hindex of 61, co-authored 653 publications receiving 12666 citations. Previous affiliations of Pietro Ferraro include Aeritalia & Centre national de la recherche scientifique.


Papers
More filters
Proceedings ArticleDOI
TL;DR: The pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of polymeric material as mentioned in this paper, leading to a new concept in 3D lithography.
Abstract: The pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of polymeric material. In this work we introduced a novel approach for fabricating a wide variety of soft solid-like microstructures, thus leading to a new concept in 3D lithography. A relatively easy to accomplish technique has been demonstrated for curing different transient stages of polymer fluids by rapid cross-linking of PDMS. The method is twofold innovative thanks to the electrode-less configuration and to the rapid formation of a wide variety of 3D solid-like structures by exploiting polymer instabilities. This new and unique technique is named "pyro-electrohydrodynamic (PEHD) lithography", meaning the generation of structures by using forces produced by electric fields generated by the pyroelectric effect. The fabrication of polymer wires, needles, pillars, cones, or microspheres is reported, and practical proofs of their use in photonics are presented.

2 citations

Journal ArticleDOI
TL;DR: The results show that the optical focusing properties of WBCs allow the clustering of the two populations by means of a mere morphological analysis, thus leading to the new concept of cell-optical-fingerprint avoiding fluorescent dyes.
Abstract: Live cells act as biological lenses and can be employed as real‐world optical components in bio‐hybrid systems. Imaging at nanoscale, optical tweezers, lithography and also photonic waveguiding are some of the already proven functionalities, boosted by the advantage that cells are fully biocompatible for intra‐body applications. So far, various cell types have been studied for this purpose, such as red blood cells, bacterial cells, stem cells and yeast cells. White Blood Cells (WBCs) play a very important role in the regulation of the human body activities and are usually monitored for assessing its health. WBCs can be considered bio‐lenses but, to the best of our knowledge, characterization of their optical properties have not been investigated yet. Here, we report for the first time an accurate study of two model classes of WBCs (i.e., monocytes and lymphocytes) by means of a digital holographic microscope coupled with a microfluidic system, assuming WBCs bio‐lens characteristics. Thus, quantitative phase maps for many WBCs have been retrieved in flow‐cytometry (FC) by achieving a significant statistical analysis to prove the enhancement in differentiation among sphere‐like bio‐lenses according to their sizes (i.e., diameter d) exploiting intensity parameters of the modulated light in proximity of the cell optical axis. We show that the measure of the low intensity area (S: Iz

2 citations

Proceedings ArticleDOI
10 Sep 2006
TL;DR: In this article, the concept of Lateral Shear Interferometry (LSI) with Digital Holography (DHI) is combined with quantitative phase microscopy (QPM) for investigation in different field of applications.
Abstract: By combining the concept of Lateral Shear Interferometry (LSI) with Digital Holography we demonstrate that quantitative phase microscopy (QPM) can be used for investigation in different field of applications. The proposed approach gives some important advantages compared to other methods used for QPM. The method is a true single image QPM approach. In fact by using the digital shear of the reconstructed phase map in the image plane the defocus aberration introduced by the microscope objective can efficiently removed. In addition in most cases the unwrapping procedure can be avoided greatly simplifying the phase-map recovery for quantitative measurement. Numerical lateral shear of the reconstructed wave front in the image plane makes it possible to retrieve the derivative of the wave front. In analogy with the standard procedure usually applied in optical testing by means of LSI, the wave front can be reconstructed.

2 citations

Proceedings ArticleDOI
13 Jul 2015
TL;DR: In this article, an optofluidic platform, composed by an optical tweezer and holographic modulus, is employed to retrieve several holograms at different angular positions, which are processed by the shape from silhouette algorithm to estimate the 3D shape of the cells.
Abstract: In this paper, we present a new approach for three-dimensional reconstruction and biovolume estimation of some species of diatoms. An optofluidic platform, composed by an optical tweezer and holographic modulus, is employed to retrieve several holograms at different angular positions, which are processed by the shape from silhouette algorithm to estimate the 3D shape of the cells.

2 citations

Journal ArticleDOI
TL;DR: In this paper, a simple experimental method based on holographic interferometry was developed to account for the effect of the unwanted rigid rotations on the holographic fringe patterns, which can be easily applied and permits easy evaluation of the contribution of rigid rotation angles.

2 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

01 Jan 2006

3,012 citations