scispace - formally typeset
Search or ask a question
Author

Pijush Ghosh

Bio: Pijush Ghosh is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Materials science & Polymer. The author has an hindex of 14, co-authored 58 publications receiving 823 citations. Previous affiliations of Pijush Ghosh include Johns Hopkins University & North Dakota State University.


Papers
More filters
Journal ArticleDOI
01 Apr 2018
TL;DR: In this paper, the mechanical properties of Ag29(BDT)12(TPP)4 cluster were investigated under both quasi-static and dynamic loading conditions, and the measured reduced Young's modulus (Er) and hardness (H) were 4.48 and 0.285 GPa, respectively, similar to those of polymers and much smaller than the values for bulk silver.
Abstract: Atomically precise clusters of noble metals are considered to be an important class of advanced materials. Crystals of these clusters composed of inorganic cores and organic ligands are fascinating owing to their tunable and unique properties. Understanding their mechanical properties can give more insight into the design of nanocluster-based devices. Here, we probe the mechanical response of single crystals of Ag29(BDT)12(TPP)4 cluster (BDT = 1,3 benzenedithiol, TPP = triphenylphosphine) under both quasi-static and dynamic loading conditions. Surprisingly, the measured reduced Young’s modulus (Er) and hardness (H) were 4.48 and 0.285 GPa, respectively, similar to those of polymers and much smaller than the values for bulk silver. These observations indicate a significant role of capping ligands on the physical properties of such materials. The observed storage modulus, loss modulus and loss factor were also found to be similar to those of polymers. The magnitude of loss factor suggested the ability of nanocrystals to absorb energy under dynamic loading. These studies of mechanical properties of cluster materials could be useful in developing their applica-

6 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a model based on the coupled diffusion-deformation mechanism which can predict the large deformation caused during this reversible folding behavior of a polymeric thin film.

5 citations

Journal ArticleDOI
16 Mar 2020-Polymer
TL;DR: In this paper, a methodology has been proposed for prediction of glass transition temperature and Young's modulus of an inaccessible substrate in a bilayer system using nanoindentation experiments on poly-Methylmethacrylate (PMMA) coating.

4 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent advances in the fundamental understanding of polymer nanocomposites reinforced by nanofillers is presented, including the thermodynamics and kinetics of formation, molecular structure and dynamics, morphology, processing behaviors, and mechanical properties.

598 citations

Journal ArticleDOI
Xi Kang1, Manzhou Zhu1
TL;DR: Promising applications of metal nanoclusters are reviewed, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling, and scope for improvements and future perspectives of these novel nanomaterials are highlighted.
Abstract: Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.

537 citations

Journal ArticleDOI
TL;DR: Alternative techniques borrowed from other fields of research are suggested to improve separation of the smallest plastic particles, including adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry.
Abstract: ConspectusThe vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (>100 nm and <5 mm) or nanoplastics (<100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and ...

362 citations

Journal ArticleDOI
TL;DR: This critical review attempts to assess issues from the viewpoint of traditional composites thereby embedding these new materials in a wider context to which conventional composite theory can be applied.
Abstract: The surge of interest in and scientific publications on the structure and properties of nanocomposites has made it rather difficult for the novice to comprehend the physical structure of these new materials and the relationship between their properties and those of the conventional range of composite materials. Some of the questions that arise are: How should the reinforcement volume fraction be calculated? How can the clay gallery contents be assessed? How can the ratio of intercalate to exfoliate be found? Does polymerization occur in the clay galleries? How is the crystallinity of semi-crystalline polymers affected by intercalation? What role do the mobilities of adsorbed molecules and clay platelets have? How much information can conventional X-ray diffraction offer? What is the thermodynamic driving force for intercalation and exfoliation? What is the elastic modulus of clay platelets? The growth of computer simulation techniques applied to clay materials has been rapid, with insight gained into the structure, dynamics and reactivity of polymer–clay systems. However these techniques operate on the basis of approximations, which may not be clear to the non-specialist. This critical review attempts to assess these issues from the viewpoint of traditional composites thereby embedding these new materials in a wider context to which conventional composite theory can be applied. (210 references)

362 citations