scispace - formally typeset
Search or ask a question
Author

Pin-Han Ho

Bio: Pin-Han Ho is an academic researcher from University of Waterloo. The author has contributed to research in topics: Wireless network & Mesh networking. The author has an hindex of 43, co-authored 362 publications receiving 9391 citations. Previous affiliations of Pin-Han Ho include Tohoku University & Queen's University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the proposed protocol cannot only guarantee the requirements of security and privacy but can also provide the desired traceability of each vehicle in the case where the ID of the message sender has to be revealed by the authority for any dispute event.
Abstract: In this paper, we first identify some unique design requirements in the aspects of security and privacy preservation for communications between different communication devices in vehicular ad hoc networks. We then propose a secure and privacy-preserving protocol based on group signature and identity (ID)-based signature techniques. We demonstrate that the proposed protocol cannot only guarantee the requirements of security and privacy but can also provide the desired traceability of each vehicle in the case where the ID of the message sender has to be revealed by the authority for any dispute event. Extensive simulation is conducted to verify the efficiency, effectiveness, and applicability of the proposed protocol in various application scenarios under different road systems.

871 citations

Proceedings ArticleDOI
13 Apr 2008
TL;DR: An efficient conditional privacy preservation protocol in vehicular ad hoc networks (VANETs) is introduced to address the issue on anonymous authentication for safety messages with authority traceability and can provide fast anonymous authentication and privacy tracking while minimizing the required storage for short-time anonymous keys.
Abstract: In this paper, we introduce an efficient conditional privacy preservation (ECPP) protocol in vehicular ad hoc networks (VANETs) to address the issue on anonymous authentication for safety messages with authority traceability. The proposed protocol is characterized by the generation of on-the-fly short-time anonymous keys between on-board units (OBUs) and roadside units (RSUs), which can provide fast anonymous authentication and privacy tracking while minimizing the required storage for short-time anonymous keys. We demonstrate the merits gained by the proposed protocol through extensive analysis.

698 citations

Proceedings ArticleDOI
Chenxi Zhang1, Rongxing Lu1, Xiaodong Lin1, Pin-Han Ho1, Xuemin Shen1 
13 Apr 2008
TL;DR: An efficient batch signature verification scheme for communications between vehicles and RSUs (or termed vehicle- to-Infrastructure (V2I) communications), in which an RSU can verify multiple received signatures at the same time such that the total verification time can be dramatically reduced.
Abstract: With the adoption of state-of-the-art telecommunication technologies for sensing and collecting traffic related information, Vehicular Sensor Networks (VSNs) have emerged as a new application scenario that is envisioned to revolutionize the human driving experiences and traffic flow control systems. To avoid any possible malicious attack and resource abuse, employing a digital signature scheme is widely recognized as the most effective approach for VSNs to achieve authentication, integrity, and validity. However, when the number of signatures received by a Roadside Unit (RSU) becomes large, a scalability problem emerges immediately, where the RSU could be difficult to sequentially verify each received signature within 300 ms interval according to the current Dedicated Short Range Communications (DSRC) broadcast protocol. In this paper, we introduce an efficient batch signature verification scheme for communications between vehicles and RSUs (or termed vehicle- to-Infrastructure (V2I) communications), in which an RSU can verify multiple received signatures at the same time such that the total verification time can be dramatically reduced. We demonstrate that the proposed scheme can achieve conditional privacy preservation that is essential in VSNs, where each message launched by a vehicle is mapped to a distinct pseudo identity, while a trust authority can always retrieve the real identity of a vehicle from any pseudo identity. With the proposed scheme, since identity-based cryptography is employed in generating private keys for pseudo identities, certificates are not needed and thus transmission overhead can be significantly reduced.

609 citations

Journal ArticleDOI
TL;DR: The current standardization process is reviewed, which covers the methods of providing security services and preserving driver privacy for wireless access in vehicular environments (WAVE) applications, and two fundamental issues, certificate revocation and conditional privacy preservation, are addressed.
Abstract: Vehicular communication networking is a promising approach to facilitating road safety, traffic management, and infotainment dissemination for drivers and passengers. One of the ultimate goals in the design of such networking is to resist various malicious abuses and security attacks. In this article we first review the current standardization process, which covers the methods of providing security services and preserving driver privacy for wireless access in vehicular environments (WAVE) applications. We then address two fundamental issues, certificate revocation and conditional privacy preservation, for making the standards practical. In addition, a suite of novel security mechanisms are introduced for achieving secure certificate revocation and conditional privacy preservation, which are considered among the most challenging design objectives in vehicular ad hoc networks.

300 citations

Proceedings ArticleDOI
19 May 2008
TL;DR: This paper introduces a novel RSU-aided messages authentication scheme, called RAISE, which adopts the k-anonymity approach to protect user identity privacy, where an adversary cannot associate a message with a particular vehicle.
Abstract: Addressing security and privacy issues is a prerequisite for a market-ready vehicular communication network Although recent related studies have already addressed most of these issues, few of them have taken scalability issues into consideration When the traffic density becomes larger, a vehicle cannot verify all signatures of the messages sent by its neighbors in a timely manner, which results in message loss Communication overhead as another issue has also not been well addressed in previously reported studies To deal with these issues, this paper introduces a novel RSU-aided messages authentication scheme, called RAISE With RAISE, roadside units (RSUs) are responsible for verifying the authenticity of the messages sent from vehicles and for notifying the results back to vehicles In addition, our scheme adopts the k-anonymity approach to protect user identity privacy, where an adversary cannot associate a message with a particular vehicle Extensive simulations are conducted to verify the proposed scheme, which demonstrates that RAISE yields much better performance than any of the previously reported counterparts in terms of message loss ratio and delay

281 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art survey of cooperative sensing is provided to address the issues of cooperation method, cooperative gain, and cooperation overhead.

1,800 citations

01 Jan 2007
TL;DR: In this paper, the authors provide updates to IEEE 802.16's MIB for the MAC, PHY and asso-ciated management procedures in order to accommodate recent extensions to the standard.
Abstract: This document provides updates to IEEE Std 802.16's MIB for the MAC, PHY and asso- ciated management procedures in order to accommodate recent extensions to the standard.

1,481 citations

Journal ArticleDOI
TL;DR: Recent advances in research related to cognitive radios are surveyed, including the fundamentals of cognitive radio technology, architecture of a cognitive radio network and its applications, and important issues in dynamic spectrum allocation and sharing are investigated in detail.
Abstract: With the rapid deployment of new wireless devices and applications, the last decade has witnessed a growing demand for wireless radio spectrum. However, the fixed spectrum assignment policy becomes a bottleneck for more efficient spectrum utilization, under which a great portion of the licensed spectrum is severely under-utilized. The inefficient usage of the limited spectrum resources urges the spectrum regulatory bodies to review their policy and start to seek for innovative communication technology that can exploit the wireless spectrum in a more intelligent and flexible way. The concept of cognitive radio is proposed to address the issue of spectrum efficiency and has been receiving an increasing attention in recent years, since it equips wireless users the capability to optimally adapt their operating parameters according to the interactions with the surrounding radio environment. There have been many significant developments in the past few years on cognitive radios. This paper surveys recent advances in research related to cognitive radios. The fundamentals of cognitive radio technology, architecture of a cognitive radio network and its applications are first introduced. The existing works in spectrum sensing are reviewed, and important issues in dynamic spectrum allocation and sharing are investigated in detail.

1,329 citations

Journal ArticleDOI
TL;DR: This paper provides a tutorial overview of IRS-aided wireless communications, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks.
Abstract: Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal propagation in wireless networks. By smartly tuning the signal reflection via a large number of low-cost passive reflecting elements, IRS is capable of dynamically altering wireless channels to enhance the communication performance. It is thus expected that the new IRS-aided hybrid wireless network comprising both active and passive components will be highly promising to achieve a sustainable capacity growth cost-effectively in the future. Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks, such as reflection optimization, channel estimation, and deployment from communication design perspectives. In this paper, we provide a tutorial overview of IRS-aided wireless communications to address the above issues, and elaborate its reflection and channel models, hardware architecture and practical constraints, as well as various appealing applications in wireless networks. Moreover, we highlight important directions worthy of further investigation in future work.

1,325 citations