scispace - formally typeset
Search or ask a question
Author

Ping Dong

Other affiliations: Hohai University, University of Dundee, Zhejiang University  ...read more
Bio: Ping Dong is an academic researcher from University of Liverpool. The author has contributed to research in topics: Sediment & Breaking wave. The author has an hindex of 24, co-authored 85 publications receiving 1630 citations. Previous affiliations of Ping Dong include Hohai University & University of Dundee.


Papers
More filters
Journal ArticleDOI
01 Nov 2010-Catena
TL;DR: In this paper, the authors present a detailed study on the morphological consequences of reduction in river sediment load and influence of human activities based on sediment load data at three gauging stations in the upper, middle and lower reaches of the Yellow River basin from 1950 to 2007.
Abstract: Long-term changes to the Yellow River delta in China have received considerable attention not only because of the growing economic importance of the delta region but also because they provide a clear example of the dominant role played by anthropogenic effects upon a large dynamic river delta. This paper presents a detailed study on the morphological consequences of reduction in river sediment load and influence of human activities based on sediment load data at three gauging stations in the upper, middle and lower reaches of the Yellow River basin from 1950 to 2007. The results indicate that sediment loads at all three gauging stations display a gradually decreasing trend over the past 58 years. The primary reason for this decrease is shown to be due to various human activities, including the construction of Longyangxia and Liujiaxia reservoirs in the upper reaches, water–soil conservation practices and the commissioning of Sanmenxia and Xiaolangdi reservoirs in the middle reaches. It is estimated that water–soil conservation practices which are a major factor to the decrease of sediment load at Huayuankou gauging station account for 40% of the total amount of reduction, sediment trapping by Sanmenxia and Xiaolangdi reservoirs account for 30% of the total amount of reduction and the 10% decrease is caused by human activities in the upper reaches. The remaining 20% decrease is attributed to precipitation decrease. The reduction of sediment load has directly impacted on the lower Yellow River and the delta region, causing alternate changes between siltation and scouring in the lower river channel along with an increased rate of erosion over the whole Yellow River delta.

172 citations

Journal ArticleDOI
TL;DR: In this paper, a weakly compressible Smoothed Particle Hydrodynamic (WCSPH) method is proposed to treat the moving boundary of a floating body and evaluate the force exerted on the floating body boundary particle by the particles surrounding it using the volume integration of the stress tensors obtained from the momentum equation in its compact support.

124 citations

Journal ArticleDOI
TL;DR: In this paper, a two-phase flow model is presented which simulates the fluid and sediment motions in the sheet flow regime on a flat bed under oscillatory flow conditions, and the model predicts that the well known phenomenon of fluid velocity overshoot that exists in clear water also appears in the case of lighter sediments but vanishes when the materials are heavier.

101 citations

Journal ArticleDOI
TL;DR: Based on monthly averaged current, temperature, and salinity, this paper analyzed the changes of suspended sediment concentration and the relationship with the warm current, coastal current, and cold water mass (CWM) in the East China Seas (ECSs).
Abstract: Based on monthly averaged current, temperature, and salinity, we analyzed the changes of suspended sediment concentration (SSC) and the relationship with the warm current, coastal current, and cold water mass (CWM) in the East China Seas (ECSs). The result shows that the coastal current and surface diluted water are the route for transporting suspended sediment. The Kuroshio and its derived warm current branches play the important role of the continental shelf circulation system and control the diffusion of suspended sediment. High SSC has been mainly concentrated in coastal current and CWM. Two sedimentary dynamic patterns have been identified. The winter-half-year pattern lasts almost 7 months. The coastal currents off the Shandong Peninsula, northern Jiangsu, Zhejiang-Fujian coast are the main routes for diffusion and deposition of the suspended sediment from the Yellow River and Changjiang River. The summer-half-year pattern is characterized by the well-developed CWM. All CWMs have a unique function to trap suspended sediment under the thermocline due to weakening tidal current and residual current there. These CWMs in the Yellow Sea (YS) and north ECS are connected together. The layer above the thermocline is characterized by diluted water with low salinity, high temperature. Suspended sediment can be transported into the Okinawa Trough and the South Korea coast during this period. A strong eddy always occur nearby the Kuroshio bend at northeast Taiwan, which has promoted the exchange between the ECS shelf and Okinawa Trough, and the development of the shelf edge current and Taiwan warm current (TWC).

75 citations

Journal ArticleDOI
TL;DR: In this paper, a smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures and the mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier-Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model.

69 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion in Loess Plateau, and found that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene.
Abstract: As one of the best-known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check-dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check-dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd.

757 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the processes by which density flows deposit sediment and proposed a new single classification for the resulting types of deposit, which is consistent with previous models of spatial decelerating (dissipative) dilute flow.
Abstract: Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run-out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain-back for long distances into basinal lows. Deposition of ungraded mud (TE-3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE-2) and finely laminated mud (TE-1) most probably result from floc settling at lower mud concentrations. Grain-size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar-laminated (TD) and ripple cross-laminated (TC) non-cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain-size break beneath the ripple cross-laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar-laminated sand can be deposited by low-amplitude bed waves in dilute flow (TB-1), but it is most likely to be deposited mainly by high-concentration near-bed layers beneath high-density flows (TB-2). More widely spaced planar lamination (TB-3) occurs beneath massive clean sand (TA), and is also formed by high-density turbidity currents. High-density turbidite deposits (TA, TB-2 and TB-3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low-density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain-size texture. Clean-sand debrites can extend for several tens of kilometres before pinching out abruptly. Up-current transitions suggest that clean-sand debris flows sometimes form via transformation from high-density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low-strength cohesive debris flows produce extensive deposits restricted to distal areas. These low-strength debris flows may contain clasts and travel long distances (DM-2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM-1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.

712 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed to balance each ecosystem service, for example, by determining the region's vegetation capacity and its spatial distribution for the sustainable development of the socioecolog...
Abstract: China's Loess Plateau is both the largest and deepest loess deposit in the world, and it has long been one of the most severely eroded areas on Earth. Since the 1970s, numerous soil- and water-conservation practices have been implemented: terracing, planting of vegetation, natural vegetation rehabilitation, and check-dam construction. With the implementation of the Grain-for-Green Project in 1999, the Loess Plateau has become the most successful ecological restoration zone in China. However, these large-scale restoration measures and drought have significantly reduced both runoff and sediment from the Loess Plateau. This situation has both advantages and disadvantages for the lower Yellow River. Some local soil erosion has been successfully controlled, but the whole regional ecosystem remains very fragile. Therefore, it is necessary to balance each ecosystem service, for example, by determining the region's vegetation capacity and its spatial distribution for the sustainable development of the socioecolog...

532 citations