scispace - formally typeset
Search or ask a question
Author

Ping Lu

Bio: Ping Lu is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Light emission & Chromophore. The author has an hindex of 19, co-authored 23 publications receiving 3505 citations. Previous affiliations of Ping Lu include New Mexico Institute of Mining and Technology & Jilin University.

Papers
More filters
Journal ArticleDOI
TL;DR: A win‐win strategy would be the elimination of the ACQ effect without sacrificing other functional properties of the luminophores, in the work reported here, which has developed a new approach.
Abstract: The development of efficient luminescent materials in the solid state is of both scientific and technological interest. An obstacle to their development is the notorious aggregation-caused quenching (ACQ) effect: the emission of conventional luminophores is often weakened in the solid state in comparison to in solution, due to aggregate formation in the condensed phase. [1‐3] The ACQ problem must be properly tackled, because the luminophores are commonly used as solid films in their practical applications. Various chemical, physical, and engineering approaches have been taken to frustrate luminophore aggregation. [4,5] The attachment of bulky alicyclics, encapsulation by amphiphilic surfactants, and blending with transparent polymers are widely used methods to impede aggregate formation. These processes, however, are often accompanied by severe side effects. The steric effects of bulky alicyclics, for example, can twist the conformations of the chromophoric units and jeopardize the electronic conjugation in the luminophores, and the electronic effects of the saturated surfactants and nonconjugated polymers can dilute the luminophore density and obstruct the charge transport in electroluminescence (EL) devices. The current approaches to the problem are thus far from ideal, because the ACQ effect is alleviated at the expense of other useful properties of the luminophores. A win‐win strategy would be the elimination of the ACQ effect without sacrificing other functional properties of the luminophores. In the work reported here, we have developed such a new approach. Triphenylamine (TPA) and its derivatives are luminescent when dissolved in good solvents [6] for them but become less emissive when aggregated in the solid state, and are therefore typical ACQ luminophores. [7] For

794 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported efficient phosphorescence from the crystals of benzophenone and its derivatives with a general formula of (X-C6H4)2C═O (X = F, Cl, Br) as well as methyl 4-bromobenzoate and 4,4′-dibromobiphenyl under ambient conditions.
Abstract: Phosphorescence has rarely been observed in pure organic chromophore systems at room temperature. We herein report efficient phosphorescence from the crystals of benzophenone and its derivatives with a general formula of (X-C6H4)2C═O (X = F, Cl, Br) as well as methyl 4-bromobenzoate and 4,4′-dibromobiphenyl under ambient conditions. These luminogens are all nonemissive when they are dissolved in good solvents, adsorbed on TLC plates, and doped into polymer films, because active intramolecular motions such as rotations and vibrations under these conditions effectively annihilate their triplet excitons via nonradiative relaxation channels. In the crystalline state, the intramolecular motions are restricted by the crystal lattices and intermolecular interactions, particularly C−H···O, N−H···O, C−H···X (X = F, Cl, Br), C−Br···Br−C, and C−H···π hydrogen bonding. The physical constraints and multiple intermolecular interactions collectively lock the conformations of the luminogen molecules. This structural rigi...

656 citations

Journal ArticleDOI
TL;DR: Pyrene, a faint fluorophore in the solid state, is transformed into a bright emitter by decorating it with tetraphenylethene units; the new luminogen is thermally and morphologically stable and its light-emitting diode shows excellent performance.

345 citations

Journal ArticleDOI
TL;DR: In this paper, a molecular functional material with high performance of circularly polarised luminescence (CPL) in the condensed phase was synthesized and thoroughly characterized, and it was shown that upon molecular aggregation, both the CD and fluorescence are simultaneously turned on, showing aggregation-induced CD and emission (AIE) effects.
Abstract: In this contribution, we conceptually present a new avenue to construction of molecular functional materials with high performance of circularly polarised luminescence (CPL) in the condensed phase. A molecule (1) containing luminogenic silole and chiral sugar moieties was synthesized and thoroughly characterized. In a solution of 1, no circular dichroism (CD) and fluorescence emission are observed, but upon molecular aggregation, both the CD and fluorescence are simultaneously turned on, showing aggregation-induced CD (AICD) and emission (AIE) effects. The AICD effect is supported by the fact that the molecules readily assemble into right-handed helical nanoribbons and superhelical ropes when aggregated. The AIE effect boosts the fluorescence quantum efficiency (ΦF) by 136 fold (ΦF, ∼0.6% in the solution versus ∼81.3% in the solid state), which surmounts the serious limitations of aggregation-caused quenching effect encountered by conventional luminescent materials. Time-resolved fluorescence study and theoretical calculation from first principles conclude that restriction of the low-frequency intramolecular motions is responsible for the AIE effect. The helical assemblies of 1 prefer to emit right-handed circularly polarised light and display large CPL dissymmetry factors (gem), whose absolute values are in the range of 0.08–0.32 and are two orders of magnitude higher than those of commonly reported organic materials. We demonstrate for the first time the use of a Teflon-based microfluidic technique for fabrication of the fluorescent pattern. This shows the highest gem of −0.32 possibly due to the enhanced assembling order in the confined microchannel environment. The CPL performance was preserved after more than half year storage under ambient conditions, revealing the excellent spectral stability. Computational simulation was performed to interpret how the molecules in the aggregates interact with each other at the molecular level. Our designed molecule represents the desired molecular functional material for generating efficient CPL in the solid state, and the current study shows the best results among the reported organic conjugated molecular systems in terms of emission efficiency, dissymmetry factor, and spectral stability.

311 citations

Journal ArticleDOI
TL;DR: Self-assembly of the BTPE molecules affords crystalline microfibers that fluoresce in 100% efficiency, giving the largest effect of aggregation-induced emission (alpha(AIE)-->infinity).

304 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: “United the authors stand, United they fall”–Aesop.
Abstract: "United we stand, divided we fall."--Aesop. Aggregation-induced emission (AIE) refers to a photophysical phenomenon shown by a group of luminogenic materials that are non-emissive when they are dissolved in good solvents as molecules but become highly luminescent when they are clustered in poor solvents or solid state as aggregates. In this Review we summarize the recent progresses made in the area of AIE research. We conduct mechanistic analyses of the AIE processes, unify the restriction of intramolecular motions (RIM) as the main cause for the AIE effects, and derive RIM-based molecular engineering strategies for the design of new AIE luminogens (AIEgens). Typical examples of the newly developed AIEgens and their high-tech applications as optoelectronic materials, chemical sensors and biomedical probes are presented and discussed.

2,322 citations

Journal ArticleDOI
TL;DR: This review summarizes and discusses the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure-property relationships, TadF mechanisms and applications.
Abstract: Organic materials that exhibit thermally activated delayed fluorescence (TADF) are an attractive class of functional materials that have witnessed a booming development in recent years. Since Adachi et al. reported high-performance TADF-OLED devices in 2012, there have been many reports regarding the design and synthesis of new TADF luminogens, which have various molecular structures and are used for different applications. In this review, we summarize and discuss the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure–property relationships, TADF mechanisms and applications. We hope that such a review provides a clear outlook of these novel functional materials for a broad range of scientists within different disciplinary areas and attracts more researchers to devote themselves to this interesting research field.

1,566 citations