scispace - formally typeset
Search or ask a question
Author

Ping Wang

Bio: Ping Wang is an academic researcher from Tianjin University. The author has contributed to research in topics: Convolutional neural network & Computer science. The author has an hindex of 7, co-authored 36 publications receiving 174 citations.

Papers
More filters
Journal ArticleDOI
Shuo Zhuang1, Ping Wang1, Boran Jiang1, Maosong Li, Zhihong Gong 
TL;DR: A model to detect water stress of maize in the early stage based on a supervised learning algorithm, gradient boosting decision tree (GBDT), which had an effective detection performance between water suitability and water stress conditions in the maize fields.

39 citations

Journal ArticleDOI
TL;DR: A novel slow feature analysis based framework for fall detection in a house care environment that is comparable to other state-of-the-art methods on the multiple-camera fall dataset and the SDUFall dataset.
Abstract: Falls are reported to be the leading causes of accidental deaths among elderly people. Automatic detection of falls from video sequences is an assistant technology for low-cost health care systems. In this paper, we present a novel slow feature analysis based framework for fall detection in a house care environment. Firstly, a foreground human body is extracted by a background subtraction technique. After morphological operations, the human silhouette is refined and covered by a fitted ellipse. Secondly, six shape features are quantified from the covered silhouette to represent different human postures. With the help of the learned slow feature functions, the shape feature sequences are transformed into slow feature sequences with discriminative information about human actions. To represent the fall incidents, the squared first order temporal derivatives of the slow features are accumulated into a classification vector. Lastly, falls are distinguished from other daily actions, such as walking, crouching, and sitting, by the trained directed acyclic graph support vector machine. Experiments on the multiple-camera fall dataset and the SDUFall dataset demonstrate that our method is comparable to other state-of-the-art methods, achieving 94.00% recognition rate on the former dataset and 96.57% on the latter one.

34 citations

Journal ArticleDOI
TL;DR: A large-scale remote-sensing dataset for geospatial object detection (RSD-GOD) that consists of 5 different categories with 18,187 annotated images and 40,990 instances is constructed and a single shot detection framework with multi-scale feature fusion is designed.
Abstract: With the rapid advances in remote-sensing technologies and the larger number of satellite images, fast and effective object detection plays an important role in understanding and analyzing image information, which could be further applied to civilian and military fields. Recently object detection methods with region-based convolutional neural network have shown excellent performance. However, these two-stage methods contain region proposal generation and object detection procedures, resulting in low computation speed. Because of the expensive manual costs, the quantity of well-annotated aerial images is scarce, which also limits the progress of geospatial object detection in remote sensing. In this paper, on the one hand, we construct and release a large-scale remote-sensing dataset for geospatial object detection (RSD-GOD) that consists of 5 different categories with 18,187 annotated images and 40,990 instances. On the other hand, we design a single shot detection framework with multi-scale feature fusion. The feature maps from different layers are fused together through the up-sampling and concatenation blocks to predict the detection results. High-level features with semantic information and low-level features with fine details are fully explored for detection tasks, especially for small objects. Meanwhile, a soft non-maximum suppression strategy is put into practice to select the final detection results. Extensive experiments have been conducted on two datasets to evaluate the designed network. Results show that the proposed approach achieves a good detection performance and obtains the mean average precision value of 89.0% on a newly constructed RSD-GOD dataset and 83.8% on the Northwestern Polytechnical University very high spatial resolution-10 (NWPU VHR-10) dataset at 18 frames per second (FPS) on a NVIDIA GTX-1080Ti GPU.

31 citations

Journal ArticleDOI
Boran Jiang1, Ping Wang1, Shuo Zhuang1, Maosong Li, Zhenfa Li, Zhihong Gong 
TL;DR: This work proposes a method for detecting drought in maize from three aspects: colour, texture and plant morphology via computer vision, which has good adaptability to light conditions in different periods of the day.

26 citations

Journal ArticleDOI
TL;DR: Inspired by deep learning, a convolutional neural network is applied for the first time to maize water stress recognition and Experimental results demonstrate that the learned features perform better than hand-crafted features to detect water stress and quantify stress severity.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Computer and Robot Vision Vol.
Abstract: Computer and Robot Vision Vol. 1, by R.M. Haralick and Linda G. Shapiro, Addison-Wesley, 1992, ISBN 0-201-10887-1.

1,426 citations

Book ChapterDOI
E.R. Davies1
01 Jan 1990
TL;DR: This chapter introduces the subject of statistical pattern recognition (SPR) by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier.
Abstract: This chapter introduces the subject of statistical pattern recognition (SPR). It starts by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier. The concepts of an optimal number of features, representativeness of the training data, and the need to avoid overfitting to the training data are stressed. The chapter shows that methods such as the support vector machine and artificial neural networks are subject to these same training limitations, although each has its advantages. For neural networks, the multilayer perceptron architecture and back-propagation algorithm are described. The chapter distinguishes between supervised and unsupervised learning, demonstrating the advantages of the latter and showing how methods such as clustering and principal components analysis fit into the SPR framework. The chapter also defines the receiver operating characteristic, which allows an optimum balance between false positives and false negatives to be achieved.

1,189 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of ELM and Response Surface Methodology (RSM) was evaluated for improving the cold flow and lubricity characteristics of P50S50 biodiesel produced from the palm-sesame oil blend.

83 citations

Journal ArticleDOI
TL;DR: This approach is more accurate and robust for ship detection of high-resolution SAR imagery, especially inshore and offshore scenes, and with the Soft Non-Maximum Suppression algorithm, the network performs better and the COCO evaluation metrics are effective for SAR image ship detection.
Abstract: Ship detection in high-resolution synthetic aperture radar (SAR) imagery is a challenging problem in the case of complex environments, especially inshore and offshore scenes. Nowadays, the existing methods of SAR ship detection mainly use low-resolution representations obtained by classification networks or recover high-resolution representations from low-resolution representations in SAR images. As the representation learning is characterized by low resolution and the huge loss of resolution makes it difficult to obtain accurate prediction results in spatial accuracy; therefore, these networks are not suitable to ship detection of region-level. In this paper, a novel ship detection method based on a high-resolution ship detection network (HR-SDNet) for high-resolution SAR imagery is proposed. The HR-SDNet adopts a novel high-resolution feature pyramid network (HRFPN) to take full advantage of the feature maps of high-resolution and low-resolution convolutions for SAR image ship detection. In this scheme, the HRFPN connects high-to-low resolution subnetworks in parallel and can maintain high resolution. Next, the Soft Non-Maximum Suppression (Soft-NMS) is used to improve the performance of the NMS, thereby improving the detection performance of the dense ships. Then, we introduce the Microsoft Common Objects in Context (COCO) evaluation metrics, which provides not only the higher quality evaluation metrics average precision (AP) for more accurate bounding box regression, but also the evaluation metrics for small, medium and large targets, so as to precisely evaluate the detection performance of our method. Finally, the experimental results on the SAR ship detection dataset (SSDD) and TerraSAR-X high-resolution images reveal that (1) our approach based on the HRFPN has superior detection performance for both inshore and offshore scenes of the high-resolution SAR imagery, which achieves nearly 4.3% performance gains compared to feature pyramid network (FPN) in inshore scenes, thus proving its effectiveness; (2) compared with the existing algorithms, our approach is more accurate and robust for ship detection of high-resolution SAR imagery, especially inshore and offshore scenes; (3) with the Soft-NMS algorithm, our network performs better, which achieves nearly 1% performance gains in terms of AP; (4) the COCO evaluation metrics are effective for SAR image ship detection; (5) the displayed thresholds within a certain range have a significant impact on the robustness of ship detectors.

83 citations