scispace - formally typeset
Search or ask a question
Author

Pingkun Yan

Bio: Pingkun Yan is an academic researcher from Rensselaer Polytechnic Institute. The author has contributed to research in topics: Image segmentation & Segmentation. The author has an hindex of 40, co-authored 224 publications receiving 6343 citations. Previous affiliations of Pingkun Yan include National University of Singapore & University of Central Florida.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper introduced a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity, which is capable of not only reducing the image noise level but also trying to keep the critical information at the same time.
Abstract: The continuous development and extensive use of computed tomography (CT) in medical practice has raised a public concern over the associated radiation dose to the patient. Reducing the radiation dose may lead to increased noise and artifacts, which can adversely affect the radiologists’ judgment and confidence. Hence, advanced image reconstruction from low-dose CT data is needed to improve the diagnostic performance, which is a challenging problem due to its ill-posed nature. Over the past years, various low-dose CT methods have produced impressive results. However, most of the algorithms developed for this application, including the recently popularized deep learning techniques, aim for minimizing the mean-squared error (MSE) between a denoised CT image and the ground truth under generic penalties. Although the peak signal-to-noise ratio is improved, MSE- or weighted-MSE-based methods can compromise the visibility of important structural details after aggressive denoising. This paper introduces a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory and promises to improve the performance of GAN. The perceptual loss suppresses noise by comparing the perceptual features of a denoised output against those of the ground truth in an established feature space, while the GAN focuses more on migrating the data noise distribution from strong to weak statistically. Therefore, our proposed method transfers our knowledge of visual perception to the image denoising task and is capable of not only reducing the image noise level but also trying to keep the critical information at the same time. Promising results have been obtained in our experiments with clinical CT images.

916 citations

Journal ArticleDOI
TL;DR: This paper introduces a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity that is capable of not only reducing the image noise level but also trying to keep the critical information at the same time.
Abstract: In this paper, we introduce a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transform theory, and promises to improve the performance of the GAN. The perceptual loss compares the perceptual features of a denoised output against those of the ground truth in an established feature space, while the GAN helps migrate the data noise distribution from strong to weak. Therefore, our proposed method transfers our knowledge of visual perception to the image denoising task, is capable of not only reducing the image noise level but also keeping the critical information at the same time. Promising results have been obtained in our experiments with clinical CT images.

772 citations

Journal ArticleDOI
TL;DR: Prostate cancer localized on magnetic resonance Imaging may be targeted using this novel magnetic resonance imaging/ultrasound fusion guided biopsy platform, and to determine which patients may benefit.

435 citations

Journal ArticleDOI
01 Feb 2020
TL;DR: This survey outlines the evolution of deep learning-based medical image registration in the context of both research challenges and relevant innovations in the past few years and highlights future research directions to show how this field may be possibly moved forward to the next level.
Abstract: The establishment of image correspondence through robust image registration is critical to many clinical tasks such as image fusion, organ atlas creation, and tumor growth monitoring and is a very challenging problem. Since the beginning of the recent deep learning renaissance, the medical imaging research community has developed deep learning-based approaches and achieved the state-of-the-art in many applications, including image registration. The rapid adoption of deep learning for image registration applications over the past few years necessitates a comprehensive summary and outlook, which is the main scope of this survey. This requires placing a focus on the different research areas as well as highlighting challenges that practitioners face. This survey, therefore, outlines the evolution of deep learning-based medical image registration in the context of both research challenges and relevant innovations in the past few years. Further, this survey highlights future research directions to show how this field may be possibly moved forward to the next level.

349 citations

Journal ArticleDOI
TL;DR: Manifold regularization is incorporated into sparsity-constrained NMF for unmixing in this paper and can keep the close link between the original image and the material abundance maps, which leads to a more desired un Mixing performance.
Abstract: Hyperspectral unmixing is one of the most important techniques in analyzing hyperspectral images, which decomposes a mixed pixel into a collection of constituent materials weighted by their proportions. Recently, many sparse nonnegative matrix factorization (NMF) algorithms have achieved advanced performance for hyperspectral unmixing because they overcome the difficulty of absence of pure pixels and sufficiently utilize the sparse characteristic of the data. However, most existing sparse NMF algorithms for hyperspectral unmixing only consider the Euclidean structure of the hyperspectral data space. In fact, hyperspectral data are more likely to lie on a low-dimensional submanifold embedded in the high-dimensional ambient space. Thus, it is necessary to consider the intrinsic manifold structure for hyperspectral unmixing. In order to exploit the latent manifold structure of the data during the decomposition, manifold regularization is incorporated into sparsity-constrained NMF for unmixing in this paper. Since the additional manifold regularization term can keep the close link between the original image and the material abundance maps, the proposed approach leads to a more desired unmixing performance. The experimental results on synthetic and real hyperspectral data both illustrate the superiority of the proposed method compared with other state-of-the-art approaches.

346 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Jan 2006

3,012 citations