scispace - formally typeset
Search or ask a question
Author

Pinhas Alpert

Bio: Pinhas Alpert is an academic researcher from Tel Aviv University. The author has contributed to research in topics: Precipitation & Mediterranean sea. The author has an hindex of 57, co-authored 304 publications receiving 11410 citations. Previous affiliations of Pinhas Alpert include Harvard University & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors conduct a coherent study of the full-scale of daily rainfall categories over a relatively largesubtropical region- the Mediterranean- in order to assess whether this paradoxical behavior is real and its extent.
Abstract: ] Earlier reports indicated some specific isolated regionsexhibiting a paradoxical increase of extreme rainfall in spite ofdecrease in the totals. Here, we conduct a coherent study of thefull-scale of daily rainfall categories over a relatively largesubtropical region- the Mediterranean- in order to assess whetherthis paradoxical behavior is real and its extent. We show that thetorrential rainfall in Italy exceeding 128 mm/d has increasedpercentage-wise by a factor of 4 during 1951–1995 with strongpeaks in El-Nino years. In Spain, extreme categories at both tails ofthe distribution (light: 0-4 mm/d and heavy/torrential: 64 mm/d andup) increased significantly. No significant trends were found inIsrael and Cyprus. The consequent redistribution of the dailyrainfall categories -torrential/heavy against the moderate/lightintensities - is of utmost interest particularly in the semi-aridsub-tropical regions for purposes of water management, soilerosion and flash floods impacts. I

494 citations

Book ChapterDOI
01 Jan 2006
TL;DR: The Mediterranean region has many morphologic, geographical, historical, and societal characteristics, which make its climate scientifically interesting as mentioned in this paper, and the concept of Mediterranean climate is characterized by mild wet winters and warm to hot, dry summers.
Abstract: Publisher Summary The Mediterranean Region has many morphologic, geographical, historical, and societal characteristics, which make its climate scientifically interesting. The concept of Mediterranean climate is characterized by mild wet winters and warm to hot, dry summers and occur on the west side of continents between about 30° and 40° latitude. However, the presence of a relatively large mass of water is unique to the actual Mediterranean region. The Mediterranean Sea is a marginal and semi-enclosed sea; it is located on the western side of a large continental area and is surrounded by Europe to the North, Africa to the South, and Asia to the East. The chapter discusses that the climate of the Mediterranean region is to a large extent forced by planetary scale patterns. The time and space behavior of the regional features associated with such large-scale forcing is complex. Orography and land–sea distribution play an important role establishing the climate at basin scale and its teleconnections with global patterns. Different levels of services of readiness to emergencies, technological, and economic resources are likely to result in very different adaptation capabilities to environmental changes and new problems. The different economic situations and demographic trends are likely to produce contrasts and conflicts in a condition of limited available resources and environmental stress.

493 citations

Journal ArticleDOI
TL;DR: In this paper, a simple method is developed for computing the interactions among various factors influencing the atmospheric circulations, and numerical simulations can be utilized to obtain the pure contribution of any factor to any predicted field, as well as the contributions due to the mutual interactions among two or more factors.
Abstract: A simple method is developed for computing the interactions among various factors influencing the atmospheric circulations. It is shown how numerical simulations can be utilized to obtain the pure contribution of any factor to any predicted field, as well as the contributions due to the mutual interactions among two or more factors. The mathematical basis for n factors is developed, and it is shown that 2n simulations are required for the separation of the contributions and their possible interactions. The method is demonstrated with two central factors, the topography and surface fluxes, and their effect on the rainfall distribution for a cyclone evolution in the Mediterranean.

408 citations

Journal ArticleDOI
05 May 2006-Science
TL;DR: Here it is demonstrated how measurements of the received signal level, which are made in a cellular network, provide reliable measurements for surface rainfall.
Abstract: The global spread of wireless networks brings a great opportunity for their use in environmental studies. Weather, atmospheric conditions, and constituents cause propagation impairments on radio links. As such, while providing communication facilities, existing wireless communication systems can be used as a widely distributed, high-resolution atmospheric observation network, operating in real time with minimum supervision and without additional cost. Here we demonstrate how measurements of the received signal level, which are made in a cellular network, provide reliable measurements for surface rainfall. We compare the estimated rainfall intensity with radar and rain gauge measurements.

382 citations

Journal ArticleDOI
01 Jan 1990-Tellus A
TL;DR: A thoroughly objective method for the definition, selection and tracing of Mediterranean region cyclones is presented in this paper, which is applied to the ECMWF 1982-1987 analyzed datasets to show monthly cyclone frequencies, cyclonic tracks and vertical variation of average relative vorticity.
Abstract: A thoroughly objective method for the definition, selection and tracing of Mediterranean region cyclones is presented. The method is applied to the ECMWF 1982-1987 analyzed datasets to show monthly cyclone frequencies, cyclonic tracks and vertical variation of average relative vorticity. Day-to-night changes and vertical variation of cyclonic frequencies/vorticities indicate the importance of the sea thermal effect in the eastern Mediterranean. In the western Mediterranean and to a lesser extent in the Cyprus region, the lee cyclogenetic effect is very pronounced. Monthly cyclone tracks are presented and they clearly indicate the preferred routes of cyclonic movements. DOI: 10.1034/j.1600-0870.1990.00007.x

317 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: The second most important contribution to anthropogenic climate warming, after carbon dioxide emissions, was made by black carbon emissions as mentioned in this paper, which is an efficient absorbing agent of solar irradiation that is preferentially emitted in the tropics and can form atmospheric brown clouds in mixture with other aerosols.
Abstract: Black carbon in soot is an efficient absorbing agent of solar irradiation that is preferentially emitted in the tropics and can form atmospheric brown clouds in mixture with other aerosols. These factors combine to make black carbon emissions the second most important contribution to anthropogenic climate warming, after carbon dioxide emissions.

3,060 citations

Journal ArticleDOI
TL;DR: There is a direct influence of global warming on precipitation as mentioned in this paper, as the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere.
Abstract: There is a direct influence of global warming on precipitation. Increased heating leads to greater evaporation and thus surface drying, thereby increasing the intensity and duration of drought. However, the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere. Hence, storms, whether individual thunderstorms, extratropical rain or snow storms, or tropical cyclones, supplied with increased moisture, produce more intense precipitation events. Such events are observed to be widely occurring, even where total precipitation is decreasing: 'it never rains but it pours!' This increases the risk of flooding. The atmo- spheric and surface energy budget plays a critical role in the hydrological cycle, and also in the slower rate of change that occurs in total precipitation than total column water vapor. With modest changes in winds, patterns of precipitation do not change much, but result in dry areas becoming drier (generally throughout the subtropics) and wet areas becoming wetter, especially in the mid- to high latitudes: the 'rich get richer and the poor get poorer'. This pattern is simulated by climate mod- els and is projected to continue into the future. Because, with warming, more precipitation occurs as rain instead of snow and snow melts earlier, there is increased runoff and risk of flooding in early spring, but increased risk of drought in summer, especially over continental areas. However, with more precipitation per unit of upward motion in the atmosphere, i.e. 'more bang for the buck', atmo- spheric circulation weakens, causing monsoons to falter. In the tropics and subtropics, precipitation patterns are dominated by shifts as sea surface temperatures change, with El Nino a good example. The volcanic eruption of Mount Pinatubo in 1991 led to an unprecedented drop in land precipitation and runoff, and to widespread drought, as precipitation shifted from land to oceans and evaporation faltered, providing lessons for possible geoengineering. Most models simulate precipitation that occurs prematurely and too often, and with insufficient intensity, resulting in recycling that is too large and a lifetime of moisture in the atmosphere that is too short, which affects runoff and soil moisture.

2,525 citations

Journal ArticleDOI
TL;DR: This article presented a review of climate change projections over the Mediterranean region based on the most recent and comprehensive ensembles of global and regional climate change simulations completed as part of international collaborative projects.

2,524 citations

Journal ArticleDOI
12 Sep 2002-Nature
TL;DR: Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.
Abstract: Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

2,021 citations