scispace - formally typeset
Search or ask a question
Author

Piotr Bródka

Bio: Piotr Bródka is an academic researcher from Wrocław University of Technology. The author has contributed to research in topics: Social network & Social network analysis. The author has an hindex of 28, co-authored 117 publications receiving 2094 citations. Previous affiliations of Piotr Bródka include University of Wrocław & Blekinge Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new method for exploring the evolution of social groups, called Group Evolution Discovery (GED), which has been used in the study of human resource managers, personnel recruitment, and marketing.
Abstract: The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire network, extracted social groups and single individuals as well. One of the most interesting research topic is the dynamics of social groups which means analysis of group evolution over time. Having appropriate knowledge and methods for dynamic analysis, one may attempt to predict the future of the group, and then manage it properly in order to achieve or change this predicted future according to specific needs. Such ability would be a powerful tool in the hands of human resource managers, personnel recruitment, marketing, etc. The social group evolution consists of individual events and seven types of such changes have been identified in the paper: continuing, shrinking, growing, splitting, merging, dissolving and forming. To enable the analysis of group evolution a change indicator—inclusion measure was proposed. It has been used in a new method for exploring the evolution of social groups, called Group Evolution Discovery (GED). The experimental results of its use together with the comparison to two well-known algorithms in terms of accuracy, execution time, flexibility and ease of implementation are also described in the paper.

145 citations

Journal ArticleDOI
TL;DR: To enable the analysis of group evolution a change indicator—inclusion measure was proposed and has been used in a new method for exploring the evolution of social groups, called Group Evolution Discovery (GED).
Abstract: The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire network, extracted social groups and single individuals as well. One of the most interesting research topic is the dynamics of social groups, it means analysis of group evolution over time. Having appropriate knowledge and methods for dynamic analysis, one may attempt to predict the future of the group, and then manage it properly in order to achieve or change this predicted future according to specific needs. Such ability would be a powerful tool in the hands of human resource managers, personnel recruitment, marketing, etc. The social group evolution consists of individual events and seven types of such changes have been identified in the paper: continuing, shrinking, growing, splitting, merging, dissolving and forming. To enable the analysis of group evolution a change indicator - inclusion measure was proposed. It has been used in a new method for exploring the evolution of social groups, called Group Evolution Discovery (GED). The experimental results of its use together with the comparison to two well-known algorithms in terms of accuracy, execution time, flexibility and ease of implementation are also described in the paper.

143 citations

Proceedings ArticleDOI
28 Jun 2009
TL;DR: Both feature analysis and experimental comparative studies revealed the general profile of selected measures of centrality in the social network profile.
Abstract: Network analysis offers many centrality measures that are successfully utilized in the process of investigating the social network profile. The most important and representative measures are presented in the paper. It includes indegree centrality, proximity prestige, rank prestige, node position, outdegree centrality, eccentrality, closeness centrality, and betweenes centrality. Both feature analysis and experimental comparative studies revealed the general profile of selected measures.

83 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed association rule learning to identify influential users and predict user participation in online social networks, and several experiments were executed based on social network analysis, in which the most influential users were compared to the results from Degree Centrality and Page Rank Centrality.
Abstract: Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

72 citations

Journal ArticleDOI
TL;DR: In this paper, some new structural measures for multi-layered social networks are proposed in order to obtain knowledge not only about the structure and characteristics of the network but also enables to understand the semantic of human relations.
Abstract: Social networks existing among employees, customers or other types of users of various IT systems have become one of the research areas of growing importance. Data about people and their interactions that exist in social media, provides information about many different types of relationships within one network. Analysing this data one can obtain knowledge not only about the structure and characteristics of the network but it also enables to understand the semantic of human relations. Each social network consists of nodes – social entities and edges linking pairs of nodes. In regular, one-layered networks, two nodes – i.e. people are connected with a single edge whereas in the multi-layered social networks, there may be many links of different types for a pair of nodes. Most of the methods used for social network analysis (SNA) may be applied only to one-layered networks. Thus, some new structural measures for multi-layered social networks are proposed in the paper. This study focuses on definitio...

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
01 Jan 1995
TL;DR: In this article, Nonaka and Takeuchi argue that Japanese firms are successful precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies, and they reveal how Japanese companies translate tacit to explicit knowledge.
Abstract: How has Japan become a major economic power, a world leader in the automotive and electronics industries? What is the secret of their success? The consensus has been that, though the Japanese are not particularly innovative, they are exceptionally skilful at imitation, at improving products that already exist. But now two leading Japanese business experts, Ikujiro Nonaka and Hiro Takeuchi, turn this conventional wisdom on its head: Japanese firms are successful, they contend, precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies. Examining case studies drawn from such firms as Honda, Canon, Matsushita, NEC, 3M, GE, and the U.S. Marines, this book reveals how Japanese companies translate tacit to explicit knowledge and use it to produce new processes, products, and services.

7,448 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This work offers a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

2,669 citations

Journal ArticleDOI
TL;DR: In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications.
Abstract: In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others We also survey and discuss existing data sets that can be represented as multilayer networks We review attempts to generalize single-layer-network diagnostics to multilayer networks We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks We conclude with a summary and an outlook

1,934 citations