scispace - formally typeset
Search or ask a question
Author

Pisut Pongchaikul

Other affiliations: University of Liverpool
Bio: Pisut Pongchaikul is an academic researcher from Mahidol University. The author has contributed to research in topics: Medicine & Genome. The author has an hindex of 6, co-authored 12 publications receiving 135 citations. Previous affiliations of Pisut Pongchaikul include University of Liverpool.

Papers
More filters
Journal ArticleDOI
TL;DR: A family of MDR megaplasmids carrying large arrays of antibiotic resistance genes in Pseudomonas strains from various sources, including P. aeruginosa clinical isolates is identified, suggesting that members carrying multiple resistance genes date back to at least the 1970s.
Abstract: Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.

79 citations

Journal ArticleDOI
TL;DR: This study suggests that sensing of NHDC by a bacterial plasma membrane receptor underlies sweetener-induced growth of a health promoting gut bacterium, designated Lactobacillus 4228.
Abstract: Disruption in stable establishment of commensal gut microbiota by early weaning is an important factor in susceptibility of young animals to enteric disorders. The artificial sweetener SUCRAM [consisting of neohesperidin dihydrochalcone (NHDC) and saccharin] included in piglets' feed reduces incidence of enteric disease. Pyrosequencing of pig caecal 16S rRNA gene amplicons identified 25 major families encompassing seven bacterial classes with Bacteroidia, Clostridia and Bacilli dominating the microbiota. There were significant shifts in microbial composition in pigs maintained on a diet containing SUCRAM, establishing SUCRAM as a major influence driving bacterial community dynamics. The most notable change was a significant increase of Lactobacillaceae population abundance, almost entirely due to a single phylotype, designated Lactobacillus 4228. The sweetener-induced increase in Lactobacillaceae was observed in two different breeds of pigs signifying a general effect. We isolated Lactobacillus 4228, sequenced its genome and found it to be related to Lactobacillus amylovorus. In vitro analyses of Lactobacillus 4228 growth characteristics showed that presence of NHDC significantly reduces the lag phase of growth and enhances expression of specific sugar transporters, independently of NHDC metabolism. This study suggests that sensing of NHDC by a bacterial plasma membrane receptor underlies sweetener-induced growth of a health promoting gut bacterium.

33 citations

Journal ArticleDOI
TL;DR: iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human and serve as a potential therapeutic strategy for severe d Dengue infection in the future.
Abstract: Background Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. Methods Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. Results iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. Conclusion iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.

25 citations

Journal ArticleDOI
TL;DR: This study reveals diversification of antimicrobial-sensing TCS across the staphylococci and hints at differential relationships between GraSR and BraSR in those species positive for both TCS.
Abstract: The bacterial genus Staphylococcus comprises diverse species with most being described as colonizers of human and animal skin. A relational analysis of features that discriminate its species and contribute to niche adaptation and survival remains to be fully described. In this study, an interspecies, whole-genome comparative analysis of 21 Staphylococcus species was performed based on their orthologues. Three well-defined multi-species groups were identified: group A (including aureus/epidermidis); group B (including saprophyticus/xylosus) and group C (including pseudintermedius/delphini). The machine learning algorithm Random Forest was applied to prioritize orthologs that drive formation of the Staphylococcus species groups A-C. Orthologues driving staphylococcal intrageneric diversity comprised regulatory, metabolic and antimicrobial resistance proteins. Notably, the BraSR (NsaRS) two-component system (TCS) and its associated BraDE transporters that regulate antimicrobial resistance showed limited distribution in the genus and their presence was most closely associated with a subset of Staphylococcus species dominated by those that colonize human skin. Divergence of BraSR and GraSR antimicrobial peptide survival TCS and their associated transporters was observed across the staphylococci, likely reflecting niche specific evolution of these TCS/transporters and their specificities for AMPs. Experimental evolution, with selection for resistance to the lantibiotic nisin, revealed multiple routes to resistance and differences in the selection outcomes of the BraSR-positive species S. hominis and S. aureus. Selection supported a role for GraSR in nisin survival responses of the BraSR-negative species S. saprophyticus. Our study reveals diversification of antimicrobial-sensing TCS across the staphylococci and hints at differential relationships between GraSR and BraSR in those species positive for both TCS.

19 citations

Journal ArticleDOI
TL;DR: The difference in the number of cultivable bacteria across age and gender that may result in the variety of local skin infection is shown and paves the way to further investigation in the aspect of in-depth metagenomics analysis and host-pathogen interaction.
Abstract: Human skin is an appropriate environment for the growth of different types of microbes that may inhabit the skin as commensal flora. This study aims at identifying the diversity of skin microbiota in healthy Saudi population. In this study, 80 Saudi subjects of both males and females, from different habitat, and different ages (elderly and young), were recruited to determine the aerobic bacterial flora from their three skin sites; hand, scalp and foot. A single colony obtained from aerobic culture was identified using Biomerieux VITEK® 2 system. For those not being identified by VITEK® 2 system, the identification was conducted using 16 s rRNA sequence. Thirty-three bacterial species were isolated from males, whilst 24 species were isolated from females. Micrococci are the predominant organisms, followed by Staphylococci, Pantoea species, and lastly Enterococcus faecium. Acinetobacter baumannii, Enterococcus faecalis, and Klebsiella pneumoniae were only found in elder subjects, while Pseudomonas aeruginosa was isolated from the young only. The number of bacterial isolates in the elders was higher that of the young. The average number of flora was larger in foot, then hand and lastly scalp. Here we show the difference in the number of cultivable bacteria across age and gender that may result in the variety of local skin infection. This study paves the way to further investigation in the aspect of in-depth metagenomics analysis and host-pathogen interaction.

12 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: This review critically discusses the evidence supporting the effects of NNSs, both synthetic sweeteners (acesulfame K, aspartame, cyclamate, saccharin, neotame, advantame, and sucralose) and naturalSweeteners (NSs; thaumatin, steviol glucosides, monellin, neohesperidin dihydrochalcone, and glycyrrhizin) and nutritive sweeteners

215 citations

Journal ArticleDOI
TL;DR: The immunological events elicited during a DENV infection are discussed and candidate cytokines that may play a key role in the severe manifestations of dengue and possible interventions are identified.
Abstract: Dengue remains one of the most important mosquito-borne diseases worldwide. Infection with one of the serologically related dengue viruses (DENVs) can lead to a wide range of clinical manifestations and severity. Severe dengue is characterized by plasma leakage and abnormal bleeding that can lead to shock and death. There is currently no specific treatment for severe dengue due to gaps in understanding of the underlying mechanisms. The transient period of vascular leakage is usually followed by a rapid recovery and is suggestive of the effects of short-lived biological mediators. Both the innate and the adaptive immune systems are activated in severe dengue and contribute to the cytokine production. We discuss the immunological events elicited during a DENV infection and identify candidate cytokines that may play a key role in the severe manifestations of dengue and possible interventions.

165 citations

Journal ArticleDOI
TL;DR: The mechanisms initiating and sustaining adaptive immune responses during primary infection with the immune pathways that are pre-existing and reactivated during secondary dengue are contrasted.
Abstract: Dengue is the leading mosquito-borne viral illness infecting humans. Owing to the circulation of multiple serotypes, global expansion of the disease and recent gains in vaccination coverage, pre-existing immunity to dengue virus is abundant in the human population, and secondary dengue infections are common. Here, we contrast the mechanisms initiating and sustaining adaptive immune responses during primary infection with the immune pathways that are pre-existing and reactivated during secondary dengue. We also discuss new developments in our understanding of the contributions of CD4+ T cells, CD8+ T cells and antibodies to immunity and memory recall. Memory recall may lead to protective or pathological outcomes, and understanding of these processes will be key to developing or refining dengue vaccines to be safe and effective. The existence of four different serotypes of dengue virus poses a challenge to vaccine development, as pre-existing immunity can lead to severe disease during infection with a heterologous serotype. This Review analyses the mechanisms of protective and pathological adaptive immune responses in primary and secondary dengue infection.

157 citations

Journal ArticleDOI
TL;DR: An overview of some recent studies that contribute to a better understanding of the evolutionary trajectory and dynamics of the insect-microbe association are presented and it is speculated that, in the future, this interaction could pave the path to a sustainable and environmentally safe way for controlling economically important pests of crop plants.
Abstract: Insects share an intimate relationship with their gut microflora and this symbiotic association has developed into an essential evolutionary outcome intended for their survival through extreme environmental conditions While it has been clearly established that insects, with very few exceptions, associate with several microbes during their life cycle, information regarding several aspects of these associations is yet to be fully unraveled Acquisition of bacteria by insects marks the onset of microbial symbiosis, which is followed by the adaptation of these bacterial species to the gut environment for prolonged sustenance and successful transmission across generations Although several insect-microbiome associations have been reported and each with their distinctive features, diversifications and specializations, it is still unclear as to what led to these diversifications Recent studies have indicated the involvement of various evolutionary processes operating within an insect body that govern the transition of a free-living microbe to an obligate or facultative symbiont and eventually leading to the establishment and diversification of these symbiotic relationships Data from various studies, summarized in this review, indicate that the symbiotic partners, ie, the bacteria and the insect undergo several genetic, biochemical and physiological changes that have profound influence on their life cycle and biology An interesting outcome of the insect-microbe interaction is the compliance of the microbial partner to its eventual genome reduction Endosymbionts possess a smaller genome as compared to their free-living forms, and thus raising the question what is leading to reductive evolution in the microbial partner This review attempts to highlight the fate of microbes within an insect body and its implications for both the bacteria and its insect host While discussion on each specific association would be too voluminous and outside the scope of this review, we present an overview of some recent studies that contribute to a better understanding of the evolutionary trajectory and dynamics of the insect-microbe association and speculate that, in the future, a better understanding of the nature of this interaction could pave the path to a sustainable and environmentally safe way for controlling economically important pests of crop plants

84 citations