scispace - formally typeset
Search or ask a question
Author

Piyali Datta

Bio: Piyali Datta is an academic researcher from University of Calcutta. The author has contributed to research in topics: Biochip & Simple polygon. The author has an hindex of 4, co-authored 33 publications receiving 65 citations. Previous affiliations of Piyali Datta include Heritage Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: This work has addressed many facets of such electrodes regarding their structural and behavioural issues in comparison to the existing square electrodes in this newly designed equilateral triangular electrodes based DMFB systems.

4 citations

Proceedings ArticleDOI
01 Mar 2017
TL;DR: In this paper, a new application area of DMFB using equilateral triangular electrodes instead of square electrodes has been proposed, considering the design issues and the fluidic constraints while performing all the modular operations.
Abstract: Microfluidic biochip is a lab-on-a-chip system that replaces conventional laboratory experiments. Digital Microfluidic Biochip (DMFB) handles liquids as discrete droplets, and offers highly reconfigurable and scalable technology. DMFB combines electronics with biology opening the new application areas of Microelectronics, Biochemistry, and Biomedical sciences. A new application area of DMFB using equilateral triangular electrodes instead of square electrodes has been proposed, considering the design issues and the fluidic constraints while performing all the modular operations. The improvement of sample-reagent mixing procedure is a key challenge issue in bioassay implementation as mixing is the most dominating operation in DMFB; hence, the Triangular DMFB (TEDMB) system leads over the existing DMFB system. In this paper, we have presented a study of TEDMB mixers and developed mixing library for TEDMB synthesis.

4 citations

Proceedings ArticleDOI
09 Jul 2014
TL;DR: The paper presents a design automation flow that augments parallelism in applications considering cross contamination problem as well.
Abstract: Digital Microfluidic Biochips (DMFB) is revolutionizing many areas of Microelectronics, Biochemistry, and Biomedical sciences. It is also known as 'Lab-on-a-Chip' for its popularity as an alternative for laboratory experiments. Pin count reduction and cross contamination avoidance are some of the core design issues for practical applications. Nowadays, due to emergency and cost effectiveness, more than one assay operations are required to be performed simultaneously. So, parallelism is a necessity in DMFB. Having an area of a given chip as a constraint, how efficiently we can use a restricted sized biochip and how much parallelism can be incorporated are the objectives of this paper. The paper presents a design automation flow that augments parallelism in applications considering cross contamination problem as well.

4 citations

Proceedings ArticleDOI
26 Jun 2015
TL;DR: This paper effectively does the task in parallel for five such sets of sub regions of a given restricted sized chip in Digital microfluidics using an array based partitioning pin assignment technique, where cross contamination problem has been considered, and efficiency of proper taxonomy of agiven sample has also been improved.
Abstract: These days, in emergency, multiple assay operations are required to be performed at parallel Area of a given chip as a constraint, how efficiently we can use the chip and how much parallelism can be built-in are the objectives of this paper A typical application of an assay may characterize a sample where, say only one type of reagent and multiple samples have been considered, or vice versa, and identify some factor(s) of the sample(s) under requirement in parallel A generalized application may also consider more samples and more reagents for respective findings at parallel In our experimentation, we effectively do this task in parallel for five such sets of sub regions of a given restricted sized chip in Digital microfluidics using an array based partitioning pin assignment technique, where cross contamination problem has also been considered, and efficiency of proper taxonomy of a given sample has also been improved

4 citations

Journal ArticleDOI
01 Oct 2018
TL;DR: This paper aims to propose a fluid-chip co-design methodology in dealing with the consideration of the fluid- chip cost drivers, while reducing the design cycles in between.
Abstract: The design process for digital microfluidic biochips (DMFBs) is becoming more complex due to the growing need for essential bio-protocols. A number of significant fluid- and chip-level synthesis tools have been offered previously for designing an efficient system. Several important cost drivers like bioassay schedule length, total pin count, congestion-free wiring, total wire length, and total layer count together measure the efficiency of the DMFBs. Besides, existing design gaps among the sub-tasks of the fluid and chip level make the design process expensive delaying the time-to-market and increasing the overall cost. In this context, removal of design cycles among the sub-tasks is a prior need to obtain a low-cost and efficient platform. Hence, this paper aims to propose a fluid-chip co-design methodology in dealing with the consideration of the fluid-chip cost drivers, while reducing the design cycles in between. A simulation study considering a number of benchmarks has been presented to observe the performance.

4 citations


Cited by
More filters
Journal Article
TL;DR: A deterministic algorithm for triangulating a simple polygon in linear time is given, using the polygon-cutting theorem and the planar separator theorem, whose role is essential in the discovery of new diagonals.
Abstract: We give a deterministic algorithm for triangulating a simple polygon in linear time. The basic strategy is to build a coarse approximation of a triangulation in a bottom-up phase and then use the information computed along the way to refine the triangulation in a top-down phase. The main tools used are the polygon-cutting theorem, which provides us with a balancing scheme, and the planar separator theorem, whose role is essential in the discovery of new diagonals. Only elementary data structures are required by the algorithm. In particular, no dynamic search trees, of our algorithm.

632 citations

Journal ArticleDOI
27 Jul 2017-Sensors
TL;DR: Recent advances in the testing technologies for digital microfluidics biochips are described, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based bioch chips.
Abstract: With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.

14 citations

Journal ArticleDOI
25 Jun 2020
TL;DR: How the function of a DMF device within a fully integrated pipeline for the production of novel organisms and biomolecules is highly dependent on integration with different sensing techniques and methodologies from machine learning and big data is discussed.
Abstract: Digital microfluidics (DMF) is a liquid handling technique that has been demonstrated to automate biological experimentation in a low-cost, rapid, and programmable manner This review discusses the role of DMF as a "digital bioconverter"-a tool to connect the digital aspects of the design-build-learn cycle with the physical execution of experiments Several applications are reviewed to demonstrate the utility of DMF as a digital bioconverter, namely, genetic engineering, sample preparation for sequencing and mass spectrometry, and enzyme-, immuno-, and cell-based screening assays These applications show that DMF has great potential in the role of a centralized execution platform in a fully integrated pipeline for the production of novel organisms and biomolecules In this paper, we discuss how the function of a DMF device within such a pipeline is highly dependent on integration with different sensing techniques and methodologies from machine learning and big data In addition to that, we examine how the capacity of DMF can in some cases be limited by known technical and operational challenges and how consolidated efforts in overcoming these challenges will be key to the development of DMF as a major enabling technology in the computer-aided biology framework

13 citations

DOI
01 Jan 2016
TL;DR: ...................................................................
Abstract: ................................................................................................................................... ii Preface ..................................................................................................................................... iii Table of

10 citations