scispace - formally typeset
Search or ask a question
Author

Piyush Shakya

Bio: Piyush Shakya is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Condition monitoring & Rolling-element bearing. The author has an hindex of 6, co-authored 12 publications receiving 134 citations. Previous affiliations of Piyush Shakya include Indian Institute of Technology Delhi.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a methodology is developed for defect type identification in rolling element bearings using the integrated Mahalanobis-Taguchi-Gram-Schmidt (MTGS) method.

54 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology for the online detection of health status of rolling element bearing into various damage stages for naturally progressing defect is proposed for online monitoring and damage stage detection, which is successfully verified on the vibration data acquired from the naturally induced and progressed defect experiments.

51 citations

Journal ArticleDOI
01 Oct 2013
TL;DR: Shakya et al. as discussed by the authors performed a comparative study of various vibration signal-based damage identification parameters for rolling element bearings and concluded that the results suggest that the ranking is quite consistent, even with a different bearing type and damage characteristic.
Abstract: Piyush Shakya, Ashish K Darpe and Makarand S Kulkarni are with the Vibration Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi – 110016, India. A comparative study of various vibration signal-based damage identification parameters for rolling element bearings is undertaken. Defects of varying severity are seeded on the outer and inner races of a double-row angular contact bearing. The influence of a defect and its severity on the observed identification parameters is investigated using vibration data acquired from the bearing housing. A comparison among the various time domain, frequency domain and time-frequency domain parameters is made based on their robustness, sensitivity to damage change and early detectivity of the bearing faults. An overall ranking of the parameters is attempted with the objective of ascertaining effective damage identification parameters from among those available for diagnosis of the rolling element bearings. Validation of the ranking is carried out with the data obtained on a different test-rig for early detectivity of damage. The results suggest that the ranking is quite consistent, even with a different bearing type and damage characteristic.

35 citations

Journal ArticleDOI
TL;DR: The results indicated the robust and reliable wheel wear detection in cylindrical grinding with the use of relatively cheap sensors like accelerometers with an accuracy of 100% with both low and high cutting depths.
Abstract: Grinding is a finishing operation performed to obtain the desired finish on the component. Wheel wear is one of the primary constraints in achieving the desired productivity in grinding. A new methodology is proposed for accurate and timely identification of wheel wear in cylindrical grinding using Hilbert Huang transform and support vector machine. During the grinding of EN31 carbon steel, the condition of the wheel and its wear was monitored with an accelerometer and power cell. Both vibration and power signals captured were used to identify the condition of the wheel and its wear. An exhaustive feature set is generated in the frequency and the time-frequency domain. Hilbert Huang transform, an adaptive time-frequency analysis technique, was used to extract the features of tool wear in the time-frequency domain. The first three IMF constituents were further chosen for feature extraction of statistical parameters based on their mean energy. Random forests algorithm was used to identify the relevant features. The methodology was validated with several grinding experiments and, is found to give an accuracy of 100% with both low and high cutting depths. The results indicated the robust and reliable wheel wear detection in cylindrical grinding with the use of relatively cheap sensors like accelerometers. The proposed method can be widely used in many applications in the industry where grinding is predominantly used as the finishing operation.

29 citations

Journal ArticleDOI
TL;DR: In this paper, an alternative approach based on empirical mode decomposition and instantaneous energy is proposed to obtain the filtered signal without the need of identifying the resonance frequency band and the objective is to maximize the defect frequency amplitude of the High-Frequency Resonance Technique spectrum.

21 citations


Cited by
More filters
Journal ArticleDOI
Yaguo Lei1, Naipeng Li1, Liang Guo1, Ningbo Li1, Tao Yan1, Jing Lin1 
TL;DR: A review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction, which provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.

1,116 citations

Journal ArticleDOI
TL;DR: A thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning is presented and provides a basis for predicting the remaining useful life of bearings and gears.
Abstract: Prognostics and health management is an emerging discipline to scientifically manage the health condition of engineering systems and their critical components. It mainly consists of three main aspects: construction of health indicators, remaining useful life prediction, and health management. Construction of health indicators aims to evaluate the system’s current health condition and its critical components. Given the observations of a health indicator, prediction of the remaining useful life is used to infer the time when an engineering systems or a critical component will no longer perform its intended function. Health management involves planning the optimal maintenance schedule according to the system’s current and future health condition, its critical components and the replacement costs. Construction of health indicators is the key to predicting the remaining useful life. Bearings and gears are the most common mechanical components in rotating machines, and their health conditions are of great concern in practice. Because it is difficult to measure and quantify the health conditions of bearings and gears in many cases, numerous vibration-based methods have been proposed to construct bearing and gear health indicators. This paper presents a thorough review of vibration-based bearing and gear health indicators constructed from mechanical signal processing, modeling, and machine learning. This review paper will be helpful for designing further advanced bearing and gear health indicators and provides a basis for predicting the remaining useful life of bearings and gears. Most of the bearing and gear health indicators reviewed in this paper are highly relevant to simulated and experimental run-to-failure data rather than artificially seeded bearing and gear fault data. Finally, some problems in the literature are highlighted and areas for future study are identified.

326 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a review on wind turbine bearing condition monitoring techniques such as acoustic measurement, electrical effects monitoring, power quality, temperature monitoring, wear debris analysis and vibration analysis.
Abstract: Since the early 1980s, wind power technology has experienced an immense growth with respect to both the turbine size and market share. As the demand for large-scale wind turbines and lor operation & maintenance cost continues to raise, the interest on condition monitoring system has increased rapidly. The main components of wind turbines are the focus of all CMS since they frequently cause high repair costs and equipment downtime. However, vast quantities of their failures are caused due to a bearing failure. Therefore, bearing condition monitoring becomes crucial. This paper aims at providing a state-of-the-art review on wind turbine bearing condition monitoring techniques such as acoustic measurement, electrical effects monitoring, power quality, temperature monitoring, wear debris analysis and vibration analysis. Furthermore, this paper will present a literature review and discuss several technical, financial and operational challenges from the purchase of the CMS to the wind farm monitoring stage.

248 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble empirical mode decomposition (EEMD) and Jensen Renyi divergence (JRD) based methodology is proposed for the degradation assessment of rolling element bearings using vibration data.

98 citations

Journal ArticleDOI
TL;DR: A novel fault diagnosis method using multivibration signals and deep belief network (DBN) can adaptively fuse multifeature data and identify various bearing faults and obtain higher identification accuracy than other methods.
Abstract: In the rolling bearing fault diagnosis, the vibration signal of single sensor is usually nonstationary and noisy, which contains very little useful information, and impacts the accuracy of fault diagnosis. In order to solve the problem, this paper presents a novel fault diagnosis method using multivibration signals and deep belief network (DBN). By utilizing the DBN’s learning ability, the proposed method can adaptively fuse multifeature data and identify various bearing faults. Firstly, multiple vibration signals are acquainted from various fault bearings. Secondly, some time-domain characteristics are extracted from original signals of each individual sensor. Finally, the features data of all sensors are put into the DBN and generate an appropriate classifier to complete fault diagnosis. In order to demonstrate the effectiveness of multivibration signals, experiments are carried out on the individual sensor with the same conditions and procedure. At the same time, the method is compared with SVM, KNN, and BPNN methods. The results show that the DBN-based method is able to not only adaptively fuse multisensor data, but also obtain higher identification accuracy than other methods.

91 citations