scispace - formally typeset
Search or ask a question
Author

Plato A. Magriotis

Other affiliations: Merck & Co., Harvard University, West Virginia University  ...read more
Bio: Plato A. Magriotis is an academic researcher from University of Patras. The author has contributed to research in topics: Enantioselective synthesis & Ketone. The author has an hindex of 18, co-authored 41 publications receiving 1004 citations. Previous affiliations of Plato A. Magriotis include Merck & Co. & Harvard University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an efficient, palladium-catalyzed hydrostannation of 1-phenylthio-1alkynes was described, and a tributyltin hydride addition was added to provide versatile 1-PNYLthio vinylstannanes regio-and stereoselectively.

77 citations

Patent
24 Nov 1998
TL;DR: The β-Alanine derivatives of formula (I) are antagonists of VLA-4 and/or α4β7, and as such are useful in the inhibition or prevention of cell adhesion and cell-adhesion mediated pathologies as discussed by the authors.
Abstract: β-Alanine derivatives of formula (I) are antagonists of VLA-4 and/or α4β7, and as such are useful in the inhibition or prevention of cell adhesion and cell-adhesion mediated pathologies. These compounds may be formulated into pharmaceutical compositions and are suitable for use in the treatment of asthma, allergies, inflammation, multiple sclerosis, and other inflammatory and autoimmune disorders.

62 citations

Journal ArticleDOI
TL;DR: SAR and pharmacokinetic characterization of this series of sulfonylated dipeptide inhibitors with structural components that when combined in a single hybrid molecule gave a sub-nanomolar inhibitor as a lead for medicinal chemistry are presented.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center.
Abstract: Hydrogenation is a core technology in chemical synthesis. High rates and selectivities are attainable only by the coordination of structurally well-designed catalysts and suitable reaction conditions. The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center. This catalyst system allows for the preferential reduction of a C=O function over a coexisting C=C linkage in a 2-propanol solution containing an alkaline base. The hydrogenation tolerates many substituents including F, Cl, Br, I, CF(3), OCH(3), OCH(2)C(6)H(5), COOCH(CH(3))(2), NO(2), NH(2), and NRCOR as well as various electron-rich and -deficient heterocycles. Furthermore, stereoselectivity is easily controlled by the electronic and steric properties (bulkiness and chirality) of the ligands as well as the reaction conditions. Diastereoselectivities observed in the catalytic hydrogenation of cyclic and acyclic ketones with the standard triphenylphosphane/ethylenediamine combination compare well with the best conventional hydride reductions. The use of appropriate chiral diphosphanes, particularly BINAP compounds, and chiral diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic and heteroaromatic ketones and gives a consistently high enantioselectivity. Certain amino and alkoxy ketones can be used as substrates. Cyclic and acyclic alpha,beta-unsaturated ketones can be converted into chiral allyl alcohols of high enantiomeric purity. Hydrogenation of configurationally labile ketones allows for the dynamic kinetic discrimination of diastereomers, epimers, and enantiomers. This new method shows promise in the practical synthesis of a wide variety of chiral alcohols from achiral and chiral ketone substrates. Its versatility is manifested by the asymmetric synthesis of some biologically significant chiral compounds. The high rate and carbonyl selectivity are based on nonclassical metal-ligand bifunctional catalysis involving an 18-electron amino ruthenium hydride complex and a 16-electron amido ruthenium species.

1,630 citations

Journal ArticleDOI
TL;DR: It is shown here how the structure of the C−O Bond Formation following C−H Bond Oxidation following Baeyer−Villiger-type Reaction and Wacker-type Cyclization influenced the formation of the S−N Bond Formation.
Abstract: II.2.1. Homogeneous Systems 2166 II.2.2. Heterogeneous Systems 2168 II.3. Hydride Transfer Reduction 2169 II.3.1. Homogeneous Systems 2169 II.3.2. Heterogeneous Systems 2171 II.4. Hydrosilylation 2172 III. C−O Bond Formation 2173 III.1. Epoxidation of Unfunctionalized Olefins 2173 III.1.1. Homogeneous Catalysis 2173 III.1.2. Heterogeneous System 2176 III.2. Dihydroxylation of Olefins 2178 III.2.1. Homogeneous Systems 2178 III.2.2. Heterogeneous System 2178 III.3. Ring Opening of Meso Epoxides 2180 III.4. Kinetic Resolution 2180 III.4.1. Terminal Epoxides 2180 III.4.2. Secondary Alcohols 2181 IV. C−H Bond Oxidation 2181 IV.1. Allylic and Benzylic Oxidation 2181 IV.2. Baeyer−Villiger-type Reaction 2181 IV.3. Wacker-type Cyclization 2182 V. S−O Bond Formation 2182 VI. C−N Bond Formation 2183 VI.1. Hydroboration/Amination 2183 VI.2. Enolate Amination 2183 VI.3. Aza-Claisen Rearrangement 2183 VI.4. Azide Synthesis 2184 VI.5. Aminohydroxylation 2184 VI.6. Aziridine Synthesis 2184 VI.7. C−N Bond Formation via S−N Bond Formation 2185

809 citations