scispace - formally typeset
Search or ask a question
Author

Plinio C. Casarotto

Bio: Plinio C. Casarotto is an academic researcher from University of Helsinki. The author has contributed to research in topics: Tropomyosin receptor kinase B & Neurotrophic factors. The author has an hindex of 17, co-authored 65 publications receiving 898 citations. Previous affiliations of Plinio C. Casarotto include Federal University of Paraná & University of São Paulo.


Papers
More filters
Journal ArticleDOI
04 Mar 2021-Cell
TL;DR: In this paper, the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol.

232 citations

Journal ArticleDOI
TL;DR: Results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms, and suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour.
Abstract: Cannabidiol (CBD) is a major non-psychotomimetic component of Cannabis sativa that has been shown to have an anxiolytic effect in human and animal models. Earlier studies suggest that these effects involve facilitation of serotonin, a neurotransmitter that has also been related to obsessive-compulsive disorder. On the basis of this evidence, this study investigated the effects of CBD in C57BL/6J mice submitted to the marble-burying test (MBT), an animal model proposed to reflect compulsive behaviour. CBD (15, 30 and 60 mg/kg) induced a significant decrease in the number of buried marbles compared with controls (34, 41 and 48%, respectively). A similar, although larger, decrease was also found after the serotonin selective reuptake inhibitor paroxetine (10 mg/kg, 77% decrease) and the benzodiazepine diazepam (2.5 mg/kg, 84% decrease). The effect of CBD (30 mg/kg) was still significant after 7 days of daily repeated administration, whereas the effect of diazepam disappeared. Pretreatment with WAY100635 (3 mg/kg), a 5HT1A receptor antagonist, prevented the effects of paroxetine but failed to alter those of CBD. These latter effects, however, were prevented by pretreatment with the CB1 receptor antagonist AM251 (1 mg/kg). These results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms. They also suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour.

116 citations

Journal ArticleDOI
TL;DR: Evidence is provided that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB1 receptors and TRPV1 channels, respectively, which might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders.

102 citations

Journal ArticleDOI
TL;DR: In this article, the effect of dexamethasone, a synthetic glucocorticoid receptor agonist, in the sucrose preference test in rats was designed to assess the effect.

85 citations

Journal ArticleDOI
TL;DR: A potential role for drugs acting on the cannabinoid system in modulating compulsive behavior in male C57BL/6J mice submitted to the marble burying test is suggested.
Abstract: Obsessive-compulsive disorder (OCD) is a common psychiatric disorder characterized by the occurrence of obsessions and compulsions. Glutamatergic abnormalities have been related to the pathophysiology of OCD. Cannabinoids inhibit glutamate release in the central nervous system, but the involvement of drugs targeting the endocannabinoid system has not yet been tested in animal models of repetitive behavior. Thus, the aim of the present study was to verify the effects of the CB1 receptor agonist WIN55,212-2, the inhibitor of anandamide uptake AM404 and the anandamide hydrolysis inhibitor URB597, on compulsive-associate behavior in male C57BL/6J mice submitted to the marble burying test (MBT), an animal model used for anti-compulsive drug screening. WIN55,212-2 (1 and 3 mg/kg), AM404 (1 and 3 mg/kg) and URB597 (0.1, 0.3 and 1 mg/kg) induced a significant decrease in the number of buried marbles compared to controls. Pretreatment with the CB1 receptor antagonist, AM251, prevented both WIN55,212-2 and URB597 effects. These results suggest a potential role for drugs acting on the cannabinoid system in modulating compulsive behavior.

62 citations


Cited by
More filters
Journal Article
TL;DR: This is a paid internship where interns work directly to assist the Director of Marketing and Communications on various tasks relating to upcoming GRA events.
Abstract: OVERVIEW The GRA Marketing Internship Program is offered to students who are interested in gaining valuable work experience through efforts in marketing, membership, sales, and events. Interns work directly to assist the Director of Marketing and Communications on various tasks relating to upcoming GRA events. During this internship, students will work a minimum of 10 hours a week and a maximum of 20 hours a week. Students are encouraged to earn credit for their internship, however this is a paid internship. Students interested in obtaining credit for their internship must consult their academic advisor or the intern coordinator at their academic unit.

1,309 citations

Journal ArticleDOI
TL;DR: The importance of BDNF for future studies aimed at disclosing mechanisms of activation of signaling pathways, neuro- and gliogenesis, as well as synaptic plasticity is highlighted.
Abstract: Brain-derived neurotrophic factor (BDNF) is one of the most widely distributed and extensively studied neurotrophins in the mammalian brain. Among its prominent functions, one can mention control of neuronal and glial development, neuroprotection, and modulation of both short- and long-lasting synaptic interactions, which are critical for cognition and memory. A wide spectrum of processes are controlled by BDNF, and the sometimes contradictory effects of its action can be explained based on its specific pattern of synthesis, comprising several intermediate biologically active isoforms that bind to different types of receptor, triggering several signaling pathways. The functions of BDNF must be discussed in close relation to the stage of brain development, the different cellular components of nervous tissue, as well as the molecular mechanisms of signal transduction activated under physiological and pathological conditions. In this review, we briefly summarize the current state of knowledge regarding the impact of BDNF on regulation of neurophysiological processes. The importance of BDNF for future studies aimed at disclosing mechanisms of activation of signaling pathways, neuro- and gliogenesis, as well as synaptic plasticity is highlighted.

715 citations

01 Dec 2012
TL;DR: For example, this paper found that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specific.
Abstract: Most mammalian genes produce multiple distinct messenger RNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced complementary DNA from nine tissues from four mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specific. Thousands of previously unknown, lineage-specific, and conserved alternative exons were identified; widely conserved alternative exons had signatures of binding by MBNL, PTB, RBFOX, STAR, and TIA family splicing factors, implicating them as ancestral mammalian splicing regulators. Our data also indicate that alternative splicing often alters protein phosphorylatability, delimiting the scope of kinase signaling.

609 citations

01 Jan 2007
TL;DR: Results indicate that astrocytes are actively involved in the transfer and storage of synaptic information and mGluR-mediated but N-methyl-d-aspartate receptor–independent plasticity is observed.
Abstract: Astrocytes play active roles in brain physiology. They respond to neurotransmitters and modulate neuronal excitability and synaptic function. However, the influence of astrocytes on synaptic transmission and plasticity at the single synapse level is unknown. Ca2+ elevation in astrocytes transiently increased the probability of transmitter release at hippocampal area CA3-CA1 synapses, without affecting the amplitude of synaptic events. This form of short-term plasticity was due to the release of glutamate from astrocytes, a process that depended on Ca2+ and soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) protein and that activated metabotropic glutamate receptors (mGluRs). The transient potentiation of transmitter release became persistent when the astrocytic signal was temporally coincident with postsynaptic depolarization. This persistent plasticity was mGluR-mediated but N-methyl-d-aspartate receptor–independent. These results indicate that astrocytes are actively involved in the transfer and storage of synaptic information.

537 citations

Journal ArticleDOI
TL;DR: How fear conditioning is a suitable model for studying the molecular mechanisms of the fear components that underlie PTSD and the biology of fear conditioning with a particular focus on the brain-derived neurotrophic factor-tyrosine kinase B (TrkB), GABAergic and glutamatergic ligand-receptor systems is discussed.

520 citations