scispace - formally typeset
Search or ask a question
Author

Pornchai Phukpattaranont

Other affiliations: University of Minnesota
Bio: Pornchai Phukpattaranont is an academic researcher from Prince of Songkla University. The author has contributed to research in topics: Feature extraction & Wavelet transform. The author has an hindex of 26, co-authored 131 publications receiving 3345 citations. Previous affiliations of Pornchai Phukpattaranont include University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed and it is indicated that most time domain features are superfluity and redundancy.
Abstract: Feature extraction is a significant method to extract the useful information which is hidden in surface electromyography (EMG) signal and to remove the unwanted part and interferences. To be successful in classification of the EMG signal, selection of a feature vector ought to be carefully considered. However, numerous studies of the EMG signal classification have used a feature set that have contained a number of redundant features. In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed to be studied their properties. The results, which were verified by scatter plot of features, statistical analysis and classifier, indicated that most time domain features are superfluity and redundancy. They can be grouped according to mathematical property and information into four main types: energy and complexity, frequency, prediction model, and time-dependence. On the other hand, all frequency domain features are calculated based on statistical parameters of EMG power spectral density. Its performance in class separability viewpoint is not suitable for EMG recognition system. Recommendation of features to avoid the usage of redundant features for classifier in EMG signal classification applications is also proposed in this study.

1,151 citations

Posted Content
TL;DR: The results demonstrate that MMNF can be used for new robust feature extraction and shows the better recognition result in noisy environment than other success feature candidates.
Abstract: Varieties of noises are major problem in recognition of Electromyography (EMG) signal. Hence, methods to remove noise become most significant in EMG signal analysis. White Gaussian noise (WGN) is used to represent interference in this paper. Generally, WGN is difficult to be removed using typical filtering and solutions to remove WGN are limited. In addition, noise removal is an important step before performing feature extraction, which is used in EMG-based recognition. This research is aimed to present a novel feature that tolerate with WGN. As a result, noise removal algorithm is not needed. Two novel mean and median frequencies (MMNF and MMDF) are presented for robust feature extraction. Sixteen existing features and two novelties are evaluated in a noisy environment. WGN with various signal-to-noise ratios (SNRs), i.e. 20-0 dB, was added to the original EMG signal. The results showed that MMNF performed very well especially in weak EMG signal compared with others. The error of MMNF in weak EMG signal with very high noise, 0 dB SNR, is about 5-10% and closed by MMDF and Histogram, whereas the error of other features is more than 20%. While in strong EMG signal, the error of MMNF is better than those from other features. Moreover, the combination of MMNF, Histrogram of EMG and Willison amplitude is used as feature vector in classification task. The experimental result shows the better recognition result in noisy environment than other success feature candidates. From the above results demonstrate that MMNF can be used for new robust feature extraction. Index Terms—Electromyography (EMG), Feature extraction, Pattern recognition, Robustness, Man-machine interfaces. —————————— a ——————————

278 citations

Book ChapterDOI
17 Oct 2012
TL;DR: Rich useful information can be obtained from the muscles and researchers can use such information in a wide class of clinical and engineering applications by measuring surface electromyography (EMG) signals, which can be computed in numerical form from a finite length time interval.
Abstract: Rich useful information can be obtained from the muscles and researchers can use such information in a wide class of clinical and engineering applications by measuring surface electromyography (EMG) signals (Merletti & Parker, 2004). Normally, EMG signals are acquired by surface electrodes that are placed on the skin superimposed on the targeted muscle. In order to use the EMG signal as a diagnosis signal or a control signal, a feature is often extracted before performing analysis or classification stage (Phinyomark et al., 2012a) because a lot of information, both useful information and noise (Phinyomark et al., 2012b), is contained in the raw EMG data. An EMG feature is a distinct characteristic of the signal that can be described or observed quantitatively, such as being large or small, spiky or smooth, and fast or slow. Generally, EMG features can be computed in numerical form from a finite length time interval and can change as a function of time, i.e. a voltage or a frequency. They can be computed in several domains, such as time domain, frequency domain, timefrequency and time-scale representations (Boostani & Moradi, 2003). However, frequencydomain features show the better performance than other-domain features in case of the assessing muscle fatigue (Al-Mulla et al., 2012). Mean frequency (MNF) and median frequency (MDF) are the most useful and popular frequency-domain features (Phinyomark et al., 2009) and frequently used for the assessment of muscle fatigue in surface EMG signals (Cifrek et al., 2009).

203 citations

Journal ArticleDOI
TL;DR: Results show that only the EMG features extracted from reconstructed EMG signals of the first-level and the second-level detail coefficients yield the improvement of class separability in feature space.
Abstract: Nowadays, analysis of electromyography (EMG) signal using wavelet transform is one of the most powerful signal processing tools. It is widely used in the EMG recognition system. In this study, we have investigated usefulness of extraction of the EMG features from multiple-level wavelet decomposition of the EMG signal. Different levels of various mother wavelets were used to obtain the useful resolution components from the EMG signal. Optimal EMG resolution component (sub-signal) was selected and then the reconstruction of the useful information signal was done. Noise and unwanted EMG parts were eliminated throughout this process. The estimated EMG signal that is an effective EMG part was extracted with the popular features, i.e. mean absolute value and root mean square, in order to improve quality of class separability. Two criteria used in the evaluation are the ratio of a Euclidean distance to a standard deviation and the scatter graph. The results show that only the EMG features extracted from reconstructed EMG signals of the first-level and the second-level detail coefficients yield the improvement of class separability in feature space. It will ensure that the result of pattern classification accuracy will be as high as possible. Optimal wavelet decomposition is obtained using the seventh order of Daubechies wavelet and the forth-level wavelet decomposition.

194 citations

Journal ArticleDOI
TL;DR: The experimental results show that most sEMG features extracted from the reconstructed s EMG signal of the first and second-level wavelet detail coefficients yield improved class separability in feature space.
Abstract: Recently, wavelet analysis has proved to be one of the most powerful signal processing tools for the analysis of surface electromyography (sEMG) signals. It has been widely used in sEMG pattern classification for both clinical and engineering applications. This study investigated the usefulness of extracting sEMG features from multiple-level wavelet decomposition and reconstruction. A suitable wavelet based function was used to yield useful resolution components from the sEMG signal. The optimal sEMG resolution component was selected and then its reconstruction carried out. Throughout this process, noise and unwanted sEMG components were removed. Effective sEMG components were extracted with twenty-five state-of-the-art features in both the time domain and the frequency domain. Two criteria were deployed in the evaluation, scatter graphs and a class separation index. The experimental results show that most sEMG features extracted from the reconstructed sEMG signal of the first and second-level wavelet detail coefficients yield improved class separability in feature space. Some features extracted from the sub-signals are recommended such as the myopulse percentage rate, zero crossing, Willison amplitude and the mean absolute value. The proposed method will ensure that the classification accuracy will be as high as possible while the computational time will be as low as possible. Ill. 3, bibl. 24, tabl. 2 (in English; abstracts in English and Lithuanian). DOI: http://dx.doi.org/10.5755/j01.eee.122.6.1816

142 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed and it is indicated that most time domain features are superfluity and redundancy.
Abstract: Feature extraction is a significant method to extract the useful information which is hidden in surface electromyography (EMG) signal and to remove the unwanted part and interferences. To be successful in classification of the EMG signal, selection of a feature vector ought to be carefully considered. However, numerous studies of the EMG signal classification have used a feature set that have contained a number of redundant features. In this study, most complete and up-to-date thirty-seven time domain and frequency domain features have been proposed to be studied their properties. The results, which were verified by scatter plot of features, statistical analysis and classifier, indicated that most time domain features are superfluity and redundancy. They can be grouped according to mathematical property and information into four main types: energy and complexity, frequency, prediction model, and time-dependence. On the other hand, all frequency domain features are calculated based on statistical parameters of EMG power spectral density. Its performance in class separability viewpoint is not suitable for EMG recognition system. Recommendation of features to avoid the usage of redundant features for classifier in EMG signal classification applications is also proposed in this study.

1,151 citations

Journal ArticleDOI
17 Sep 2013-Sensors
TL;DR: This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG messages.
Abstract: Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

654 citations

Journal ArticleDOI
TL;DR: A novel approach based on deep learning for active classification of electrocardiogram (ECG) signals by learning a suitable feature representation from the raw ECG data in an unsupervised way using stacked denoising autoencoders (SDAEs) with sparsity constraint.

507 citations

Journal ArticleDOI
TL;DR: This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days, and shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier.
Abstract: In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation.

505 citations