scispace - formally typeset
Search or ask a question
Author

Poul Jo

Bio: Poul Jo is an academic researcher from Aarhus University. The author has contributed to research in topics: Coupled cluster & Propagator. The author has an hindex of 45, co-authored 84 publications receiving 9419 citations.


Papers
More filters
Journal ArticleDOI
Abstract: We have examined the response of an exact and an MCSCF reference state to a general time‐dependent field. The time development of both the exact and the MCSCF reference state have been parametrized in terms of explicit exponential time‐dependent transformations. The time development has been determined by requiring the Ehrenfest theorem to be satisfied through each order in the interaction between the molecular system and the field. The response of the exact and the MCSCF reference state has been used to evaluate linear, quadratic, and cubic response functions. It has been shown how a large variety of molecular properties may be expressed in terms of these response functions. It has also been demonstrated that molecular properties containing the electric dipole operator may be expressed in equivalent forms involving the momentum operator both for the exact and the MCSCF state. The MCSCF response functions have been transformed to computationally attractive expressions which do not contain summation indices over intermediate states and which allow direct techniques to be straightforwardly applied.

1,003 citations

Journal ArticleDOI
TL;DR: The linear and quadratic response functions have been determined for a coupled cluster reference state from the response functions, computationally tractable expressions have been derived for excitation energies, first and second-order matrix transition elements, transition matrix elements between excited states, and second and third-order frequency-dependent molecular properties as discussed by the authors.
Abstract: The linear and quadratic response functions have been determined for a coupled cluster reference state From the response functions, computationally tractable expressions have been derived for excitation energies, first‐ and second‐order matrix transition elements, transition matrix elements between excited states, and second‐ and third‐order frequency‐dependent molecular properties

1,001 citations

Journal ArticleDOI
TL;DR: In this article, a wave function based on Slater determinants expressed as products of alphastrings and betastrings is introduced, and a highly vectorized algorithm is developed for full CI and other RAS calculations.
Abstract: A restricted active space (RAS) wave function is introduced, which encompasses many commonly used restricted CI expansions. A highly vectorized algorithm is developed for full CI and other RAS calculations. The algorithm is based on Slater determinants expressed as products of alphastrings and betastrings and lends itself to a matrix indexing C(Iα, Iβ ) of the CI vector. The major features are: (1) The intermediate summation over determinants is replaced by two intermediate summations over strings, the number of which is only the square root of the number of determinants. (2) Intermediate summations over strings outside the RAS CI space is avoided and RAS calculations are therefore almost as efficient as full CI calculations with the same number of determinants. (3) An additional simplification is devised for MS =0 states, halving the number of operations. For a case with all single and double replacements out from 415 206 Slater determinants yielding 1 136 838 Slater determinants each CI iteration takes ...

918 citations

Journal ArticleDOI
TL;DR: In this paper, a polarization propagator approach was proposed to yield excitation energies, transition moments, and dynamic polarizabilities which are consistent through second order in the electronic repulsion.
Abstract: We have formulated a polarization propagator approach which yields excitation energies, transition moments, and dynamic polarizabilities which are consistent through second order in the electronic repulsion. Certain terms are proven to be missing in our previous second order calculations of transition moments and dynamic polarizabilities and in the equation‐of‐motion calculations of the same quantities. Numerical calculations on carbon monoxide are performed. The calculations show that the major difference between the polarizability (and some transition moments) in the RPA and in the second order polarization propagator approximation is due to these terms. The total effect of all correction terms has been to improve considerably the agreement between theoretical and experimental estimates of the excitation properties for carbon monoxide.

386 citations

Journal ArticleDOI
TL;DR: In this article, the Hartree-Fock and correlation contributions to the interaction energy of the hydrogen-bonded complexes were computed in conventional calculations employing the aug-cc-pVXZ series of basis sets at the levels of second-order perturbation theory, and coupled-cluster theory with single and double excitations augmented by a perturbative triples correction.
Abstract: The Hartree-Fock and correlation contributions to the interaction energy of the hydrogen-bonded complexes (HF)2, (HCl)2, H2OHF, HCNHF, and (H2O)2 are computed in conventional calculations employing the aug-cc-pVXZ series of basis sets at the levels of Hartree-Fock theory, second-order perturbation theory, and coupled-cluster theory with single and double excitations augmented by a perturbative triples correction. The basis set convergence of the interaction energy is examined by comparison with results obtained with an explicitly correlated wave function model. The counterpoise-corrected and uncorrected Hartree-Fock interaction energies both converge very unsystematically. The convergence of the uncorrected correlation contribution is also very unsystematic because the basis set superposition error and the error from the incomplete description of the electronic Coulomb cusp both are present. Once the former has been effectively removed by the counterpoise correction, the cusp dominates and the convergence...

347 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this paper, a new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented, which allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered.
Abstract: A new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented. It allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered. The calculated solvation energies for 19 neutral molecules in water are found in very good agreement with experimental data; the solvent-induced geometry relaxation is studied for some closed and open shell molecules, at HF and DF levels. The computational times are very satisfying: the self-consistent energy evaluation needs a time 15−30% longer than the corresponding procedure in vacuo, whereas the calculation of energy gradients is only 25% longer than in vacuo for medium size molecules.

7,616 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules is evaluated.
Abstract: This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at ??HOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The ??HOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential

4,480 citations

Journal ArticleDOI
TL;DR: In this paper, a modified conjugate gradient algorithm for geometry optimization is presented for use with ab initio MO methods, where the second derivative matrix rather than its inverse is updated employing the gradients.
Abstract: A modified conjugate gradient algorithm for geometry optimization is outlined for use with ab initioMO methods. Since the computation time for analytical energy gradients is approximately the same as for the energy, the optimization algorithm evaluates and utilizes the gradients each time the energy is computed. The second derivative matrix, rather than its inverse, is updated employing the gradients. At each step, a one-dimensional minimization using a quartic polynomial is carried out, followed by an n-dimensional search using the second derivative matrix. By suitably controlling the number of negative eigenvalues of the second derivative matrix, the algorithm can also be used to locate transition structures. Representative timing data for optimizations of equilibrium geometries and transition structures are reported for ab initioSCF–MO calculations.

3,373 citations