scispace - formally typeset
Search or ask a question
Author

Poul M. F. Nielsen

Bio: Poul M. F. Nielsen is an academic researcher from University of Auckland. The author has contributed to research in topics: CellML & Physiome. The author has an hindex of 40, co-authored 220 publications receiving 9921 citations. Previous affiliations of Poul M. F. Nielsen include University of Washington & McGill University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work summarizes the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks, a software-independent language for describing models common to research in many areas of computational biology.
Abstract: Motivation: Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. Results: We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others. ∗ To whom correspondence should be addressed. Availability: The specification of SBML Level 1 is freely available from http://www.sbml.org/.

3,205 citations

Journal ArticleDOI
TL;DR: These methods provide a compact and accurate anatomic description of the ventricles suitable for use in finite element stress analysis, simulation of cardiac electrical activation, and other cardiac field modeling problems.
Abstract: We developed a mathematical representation of ventricular geometry and muscle fiber organization using three-dimensional finite elements referred to a prolate spheroid coordinate system. Within elements, fields are approximated using basis functions with associated parameters defined at the element nodes. Four parameters per node are used to describe ventricular geometry. The radial coordinate is interpolated using cubic Hermite basis functions that preserve slope continuity, while the angular coordinates are interpolated linearly. Two further nodal parameters describe the orientation of myocardial fibers. The orientation of fibers within coordinate planes bounded by epicardial and endocardial surfaces is interpolated linearly, with transmural variation given by cubic Hermite basis functions. Left and right ventricular geometry and myocardial fiber orientations were characterized for a canine heart arrested in diastole and fixed at zero transmural pressure. The geometry was represented by a 24-element ensemble with 41 nodes. Nodal parameters fitted using least squares provided a realistic description of ventricular epicardial [root mean square (RMS) error less than 0.9 mm] and endocardial (RMS error less than 2.6 mm) surfaces. Measured fiber fields were also fitted (RMS error less than 17 degrees) with a 60-element, 99-node mesh obtained by subdividing the 24-element mesh. These methods provide a compact and accurate anatomic description of the ventricles suitable for use in finite element stress analysis, simulation of cardiac electrical activation, and other cardiac field modeling problems.

705 citations

Journal ArticleDOI
TL;DR: These rules define procedures for encoding and annotating models represented in machine-readable form to enable users to have confidence that curated models are an accurate reflection of their associated reference descriptions and to facilitate model reuse and composition into large subcellular models.
Abstract: Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.

612 citations

Journal ArticleDOI
TL;DR: The structure of CellML is summarized, its current applications (including biological pathway and electrophysiological models), and its future development--in particular, the development of toolsets and the integration of ontologies are summarized.
Abstract: Advances in biotechnology and experimental techniques have lead to the elucidation of vast amounts of biological data. Mathematical models provide a method of analysing this data; however, there are two issues that need to be addressed: (1) the need for standards for defining cell models so they can, for example, be exchanged across the World Wide Web, and also read into simulation software in a consistent format and (2) eliminating the errors which arise with the current method of model publication. CellML has evolved to meet these needs of the modelling community. CellML is a free, open-source, eXtensible markup language based standard for defining mathematical models of cellular function. In this paper we summarise the structure of CellML, its current applications (including biological pathway and electrophysiological models), and its future development—in particular, the development of toolsets and the integration of ontologies.

519 citations

Journal ArticleDOI
01 Dec 2003
TL;DR: CellML 1.1 can be used in conjunction with CellML Metadata to provide a complete description of the structure and underlying mathematics of biological models to build complex systems of models that expand and reuse previously published models.
Abstract: CellML is an XML-based exchange format developed by the University of Auckland in collaboration with Physiome Sciences, Inc. CellML 1.1 has a component-based architecture allowing a modeller to build complex systems of models that expand and reuse previously published models. CellML Metadata is a format for encoding contextual information for a model. CellML 1.1 can be used in conjunction with CellML Metadata to provide a complete description of the structure and underlying mathematics of biological models. A repository of over 200 electrophysiological, mechanical, signal transduction, and metabolic pathway models is available at www.cellml.org.

328 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: An update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING), which provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information.
Abstract: An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein-protein interaction information can be error-prone and require considerable effort to annotate. Here, we present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org.

3,239 citations

Journal ArticleDOI
TL;DR: This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.
Abstract: Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a metabolic network. This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.

3,229 citations

Journal ArticleDOI
TL;DR: This work summarizes the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks, a software-independent language for describing models common to research in many areas of computational biology.
Abstract: Motivation: Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. Results: We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others. ∗ To whom correspondence should be addressed. Availability: The specification of SBML Level 1 is freely available from http://www.sbml.org/.

3,205 citations

Journal ArticleDOI
TL;DR: COPASI is presented, a platform-independent and user-friendly biochemical simulator that offers several unique features, and numerical issues with these features are discussed; in particular, the criteria to switch between stochastic and deterministic simulation methods, hybrid deterministic-stochastic methods, and the importance of random number generator numerical resolution in Stochastic simulation.
Abstract: Motivation: Simulation and modeling is becoming a standard approach to understand complex biochemical processes. Therefore, there is a big need for software tools that allow access to diverse simulation and modeling methods as well as support for the usage of these methods. Results: Here, we present COPASI, a platform-independent and user-friendly biochemical simulator that offers several unique features. We discuss numerical issues with these features; in particular, the criteria to switch between stochastic and deterministic simulation methods, hybrid deterministic--stochastic methods, and the importance of random number generator numerical resolution in stochastic simulation. Availability: The complete software is available in binary (executable) for MS Windows, OS X, Linux (Intel) and Sun Solaris (SPARC), as well as the full source code under an open source license from http://www.copasi.org. Contact: mendes@vbi.vt.edu

2,351 citations