scispace - formally typeset
Search or ask a question
Author

Prachi N. Thakar

Bio: Prachi N. Thakar is an academic researcher from Duke University. The author has contributed to research in topics: Server farm & Internet hosting service. The author has an hindex of 2, co-authored 2 publications receiving 1511 citations.

Papers
More filters
Proceedings ArticleDOI
21 Oct 2001
TL;DR: Experimental results from a prototype confirm that the system adapts to offered load and resource availability, and can reduce server energy usage by 29% or more for a typical Web workload.
Abstract: Internet hosting centers serve multiple service sites from a common hardware base. This paper presents the design and implementation of an architecture for resource management in a hosting center operating system, with an emphasis on energy as a driving resource management issue for large server clusters. The goals are to provision server resources for co-hosted services in a way that automatically adapts to offered load, improve the energy efficiency of server clusters by dynamically resizing the active server set, and respond to power supply disruptions or thermal events by degrading service in accordance with negotiated Service Level Agreements (SLAs).Our system is based on an economic approach to managing shared server resources, in which services "bid" for resources as a function of delivered performance. The system continuously monitors load and plans resource allotments by estimating the value of their effects on service performance. A greedy resource allocation algorithm adjusts resource prices to balance supply and demand, allocating resources to their most efficient use. A reconfigurable server switching infrastructure directs request traffic to the servers assigned to each service. Experimental results from a prototype confirm that the system adapts to offered load and resource availability, and can reduce server energy usage by 29% or more for a typical Web workload.

1,492 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An architectural framework and principles for energy-efficient Cloud computing are defined and the proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS).

2,511 citations

Proceedings ArticleDOI
09 Jun 2007
TL;DR: This paper presents the aggregate power usage characteristics of large collections of servers for different classes of applications over a period of approximately six months, and uses the modelling framework to estimate the potential of power management schemes to reduce peak power and energy usage.
Abstract: Large-scale Internet services require a computing infrastructure that can beappropriately described as a warehouse-sized computing system. The cost ofbuilding datacenter facilities capable of delivering a given power capacity tosuch a computer can rival the recurring energy consumption costs themselves.Therefore, there are strong economic incentives to operate facilities as closeas possible to maximum capacity, so that the non-recurring facility costs canbe best amortized. That is difficult to achieve in practice because ofuncertainties in equipment power ratings and because power consumption tends tovary significantly with the actual computing activity. Effective powerprovisioning strategies are needed to determine how much computing equipmentcan be safely and efficiently hosted within a given power budget.In this paper we present the aggregate power usage characteristics of largecollections of servers (up to 15 thousand) for different classes ofapplications over a period of approximately six months. Those observationsallow us to evaluate opportunities for maximizing the use of the deployed powercapacity of datacenters, and assess the risks of over-subscribing it. We findthat even in well-tuned applications there is a noticeable gap (7 - 16%)between achieved and theoretical aggregate peak power usage at the clusterlevel (thousands of servers). The gap grows to almost 40% in wholedatacenters. This headroom can be used to deploy additional compute equipmentwithin the same power budget with minimal risk of exceeding it. We use ourmodeling framework to estimate the potential of power management schemes toreduce peak power and energy usage. We find that the opportunities for powerand energy savings are significant, but greater at the cluster-level (thousandsof servers) than at the rack-level (tens). Finally we argue that systems needto be power efficient across the activity range, and not only at peakperformance levels.

2,047 citations

Book
Luiz Andre Barroso1, Urs Hoelzle1
01 Jan 2008
TL;DR: The architecture of WSCs is described, the main factors influencing their design, operation, and cost structure, and the characteristics of their software base are described.
Abstract: As computation continues to move into the cloud, the computing platform of interest no longer resembles a pizza box or a refrigerator, but a warehouse full of computers. These new large datacenters are quite different from traditional hosting facilities of earlier times and cannot be viewed simply as a collection of co-located servers. Large portions of the hardware and software resources in these facilities must work in concert to efficiently deliver good levels of Internet service performance, something that can only be achieved by a holistic approach to their design and deployment. In other words, we must treat the datacenter itself as one massive warehouse-scale computer (WSC). We describe the architecture of WSCs, the main factors influencing their design, operation, and cost structure, and the characteristics of their software base. We hope it will be useful to architects and programmers of today's WSCs, as well as those of future many-core platforms which may one day implement the equivalent of today's WSCs on a single board. Table of Contents: Introduction / Workloads and Software Infrastructure / Hardware Building Blocks / Datacenter Basics / Energy and Power Efficiency / Modeling Costs / Dealing with Failures and Repairs / Closing Remarks

1,938 citations

Journal ArticleDOI
Carl A. Waldspurger1
09 Dec 2002
TL;DR: Several novel ESX Server mechanisms and policies for managing memory are introduced, including a ballooning technique that reclaims the pages considered least valuable by the operating system running in a virtual machine, and an idle memory tax that achieves efficient memory utilization.
Abstract: VMware ESX Server is a thin software layer designed to multiplex hardware resources efficiently among virtual machines running unmodified commodity operating systems. This paper introduces several novel ESX Server mechanisms and policies for managing memory. A ballooning technique reclaims the pages considered least valuable by the operating system running in a virtual machine. An idle memory tax achieves efficient memory utilization while maintaining performance isolation guarantees. Content-based page sharing and hot I/O page remapping exploit transparent page remapping to eliminate redundancy and reduce copying overheads. These techniques are combined to efficiently support virtual machine workloads that overcommit memory.

1,528 citations

Proceedings ArticleDOI
07 Mar 2009
TL;DR: The PowerNap concept, an energy-conservation approach where the entire system transitions rapidly between a high-performance active state and a near-zero-power idle state in response to instantaneous load, is proposed and the Redundant Array for Inexpensive Load Sharing (RAILS) is introduced.
Abstract: Data center power consumption is growing to unprecedented levels: the EPA estimates U.S. data centers will consume 100 billion kilowatt hours annually by 2011. Much of this energy is wasted in idle systems: in typical deployments, server utilization is below 30%, but idle servers still consume 60% of their peak power draw. Typical idle periods though frequent--last seconds or less, confounding simple energy-conservation approaches.In this paper, we propose PowerNap, an energy-conservation approach where the entire system transitions rapidly between a high-performance active state and a near-zero-power idle state in response to instantaneous load. Rather than requiring fine-grained power-performance states and complex load-proportional operation from each system component, PowerNap instead calls for minimizing idle power and transition time, which are simpler optimization goals. Based on the PowerNap concept, we develop requirements and outline mechanisms to eliminate idle power waste in enterprise blade servers. Because PowerNap operates in low-efficiency regions of current blade center power supplies, we introduce the Redundant Array for Inexpensive Load Sharing (RAILS), a power provisioning approach that provides high conversion efficiency across the entire range of PowerNap's power demands. Using utilization traces collected from enterprise-scale commercial deployments, we demonstrate that, together, PowerNap and RAILS reduce average server power consumption by 74%.

1,002 citations