scispace - formally typeset
Search or ask a question
Author

Pradheep Thiyagarajan

Other affiliations: VIT University
Bio: Pradheep Thiyagarajan is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Water splitting. The author has an hindex of 9, co-authored 17 publications receiving 362 citations. Previous affiliations of Pradheep Thiyagarajan include VIT University.

Papers
More filters
Journal ArticleDOI
TL;DR: The excellent performance of the surface plasmon-enhanced mesoporous st-TIO structure suggests that tailoring the nanostructure to proper dimensions, and thereby obtaining excellent light absorption, can maximize the efficiency of a variety of photoconversion devices.
Abstract: A gold nanoparticle-coated and surface-textured TiO2 inverse opal (Au/st-TIO) structure that provides a dramatic improvement of photoelectrochemical hydrogen generation has been fabricated by nano-patterning of TiO2 precursors on TiO2 inverse opal (TIO) and subsequent deposition of gold NPs. The surface-textured TiO2 inverse opal (st-TIO) maximizes the photon trapping effects triggered by the large dimensions of the structure while maintaining the adequate surface area achieved by the small dimensions of the structure. Au NPs are incorporated to further improve photoconversion efficiency in the visible region via surface plasmon resonance. st-TIO and Au/st-TIO exhibit a maximum photocurrent density of ∼0.58 mA cm(-2) and ∼0.8 mA cm(-2), which is 2.07 and 2.86 times higher than that of bare TIO, respectively, at an applied bias of +0.5 V versus an Ag/AgCl electrode under AM 1.5 G simulated sunlight illumination via a photocatalytic hydrogen generation reaction. The excellent performance of the surface plasmon-enhanced mesoporous st-TIO structure suggests that tailoring the nanostructure to proper dimensions, and thereby obtaining excellent light absorption, can maximize the efficiency of a variety of photoconversion devices.

68 citations

Journal ArticleDOI
TL;DR: Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications, as confirmed by the EIS and I-V characteristic data.
Abstract: In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g−1 at 1 A g−1, which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g−1 and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g−1 and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I–V characteristic data.

58 citations

Journal ArticleDOI
08 Jul 2013-Small
TL;DR: The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre-determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.
Abstract: A hierarchically patterned metal/semiconductor (gold nanoparticles/ZnO nanowires) nanostructure with maximized photon trapping effects is fabricated via interference lithography (IL) for plasmon enhanced photo-electrochemical water splitting in the visible region of light. Compared with unpatterned (plain) gold nanoparticles-coated ZnO NWs (Au NPs/ZnO NWs), the hierarchically patterned Au NPs/ZnO NWs hybrid structures demonstrate higher and wider absorption bands of light leading to increased surface enhanced Raman scattering due to the light trapping effects achieved by the combination of two different nanostructure dimensions; furthermore, pronounced plasmonic enhancement of water splitting is verified in the hierarchically patterned Au NPs/ZnO NWs structures in the visible region. The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre-determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.

56 citations

Journal ArticleDOI
TL;DR: The studies reveal that the combination of two different length scales is a straightforward approach for achieving reproducible and great SERS enhancement by light trapping in the diamond-shaped larger scale structures as well as efficient collective plasmon oscillation in the small size particles.
Abstract: Dual-scale diamond-shaped gold nanostructures (d-DGNs) with larger scale diamond-shaped gold nanoposts (DGNs) coupled to smaller scale gold nanoparticles have been fabricated via interference lithography as a highly reliable and efficient substrate for surface enhanced Raman scattering (SERS). The inter- and intra-particle plasmonic fields of d-DGNs are varied by changing the periodicity of the DGNs and the density of gold nanoparticles. Because of the two different length scales in the nanostructures, d-DGNs show multipole plasmonic peaks as well as dipolar plasmonic peaks, leading to a SERS enhancement factor of greater than 109. Simulations are carried out by finite-difference time-domain (FDTD) methods to evaluate the dependence of the inter- and intra-particle plasmonic field and the results are in good agreement with the experimentally obtained data. Our studies reveal that the combination of two different length scales is a straightforward approach for achieving reproducible and great SERS enhancement by light trapping in the diamond-shaped larger scale structures as well as efficient collective plasmon oscillation in the small size particles.

53 citations

Journal ArticleDOI
TL;DR: In this article, a facile yet efficient single-step pyrolysis method was proposed to prepare bulk-scale high-performance N-doped 3D-graphitic foams with various length-scale pores.
Abstract: We present a facile yet efficient single-step pyrolysis method to prepare bulk-scale high-performance N-doped 3D-graphitic foams with various length-scale pores. The iron precursors act as catalysts for the conversion of organic substances to a graphitic structure while simultaneously providing a rigid template that prevents the aggregation of organic components, and soluble polymers act as a carbon source for the formation of N-doped multilayer graphene under high-temperature and inert conditions. The 3D-graphitic foams possess highly interconnected networks composed of micro-, meso-, and macropores with a specific surface area of up to 1509 m2 g–1 and a high conductivity of 10 S m–1. The resulting 3D-graphitic foams exhibited specific capacitance values of 330 and 242 F g–1 with outstanding cycling stability (a 23% loss after 100 000 cycles for a symmetric cell) in a three-electrode system and in a symmetric cell, respectively, when used as active materials in a supercapacitor. This study suggests the g...

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review highlights the recent progress on probing and steering charge kinetics toward designing highly efficient photocatalysts and elucidate the fundamentals behind the combinative use of controlled synthesis, characterization techniques and theoretical simulations in photocatalysis studies.
Abstract: Charge kinetics is highly critical in determining the quantum efficiency of solar-to-chemical conversion in photocatalysis, and this includes, but is not limited to, the separation of photoexcited electron–hole pairs, utilization of plasmonic hot carriers and delivery of photo-induced charges to reaction sites, as well as activation of reactants by energized charges. In this review, we highlight the recent progress on probing and steering charge kinetics toward designing highly efficient photocatalysts and elucidate the fundamentals behind the combinative use of controlled synthesis, characterization techniques (with a focus on spectroscopic characterizations) and theoretical simulations in photocatalysis studies. We first introduce the principles of various processes associated with charge kinetics that account for or may affect photocatalysis, from which a set of parameters that are critical to photocatalyst design can be summarized. We then outline the design rules for photocatalyst structures and their corresponding synthetic approaches. The implementation of characterization techniques and theoretical simulations in different steps of photocatalysis, together with the associated fundamentals and working mechanisms, are also presented. Finally, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

889 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the significant advances in tailored nanostructures of noble metal-metal oxide nanohybrids and highlight the improvement in performance in the representative solar energy conversion applications.
Abstract: The controlled synthesis of nanohybrids composed of noble metals (Au, Ag, Pt and Pd, as well as AuAg alloy) and metal oxides (ZnO, TiO2, Cu2O and CeO2) have received considerable attention for applications in photocatalysis, solar cells, drug delivery, surface enhanced Raman spectroscopy and many other important areas. The overall architecture of nanocomposites is one of the most important factors dictating the physical properties of nanohybrids. Noble metals can be coupled to metal oxides to yield diversified nanostructures, including noble metal decorated-metal oxide nanoparticles (NPs), nanoarrays, noble metal/metal oxide core/shell, noble metal/metal oxide yolk/shell and Janus noble metal–metal oxide nanostructures. In this review, we focus on the significant advances in tailored nanostructures of noble metal–metal oxide nanohybrids. The improvement in performance in the representative solar energy conversion applications including photocatalytic degradation of organic pollutants, photocatalytic hydrogen generation, photocatalytic CO2 reduction, dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) are discussed. Finally, we conclude with a perspective on the future direction and prospects of these controllable nanohybrid materials.

756 citations

Journal ArticleDOI
TL;DR: The differences between G QDs and other nanomaterials, including their nanocarbon cousins, are emphasized, and the unique advantages of GQDs for specific applications are highlighted.
Abstract: Graphene quantum dots (GQDs) that are flat 0D nanomaterials have attracted increasing interest because of their exceptional chemicophysical properties and novel applications in energy conversion and storage, electro/photo/chemical catalysis, flexible devices, sensing, display, imaging, and theranostics. The significant advances in the recent years are summarized with comparative and balanced discussion. The differences between GQDs and other nanomaterials, including their nanocarbon cousins, are emphasized, and the unique advantages of GQDs for specific applications are highlighted. The current challenges and outlook of this growing field are also discussed.

526 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of four main approaches to rational heterostructure design: coupling α-Fe2O3 with an n- or p-type semiconductor for promoting charge separation; a nanotextured conductive substrate for efficient charge collection; a surface/interface passivation layer for reduced surface and interface charge recombination; and a catalyst for accelerated water oxidation kinetics.
Abstract: Hematite (α-Fe2O3), with a bandgap suitable for absorption of the solar spectrum, is ideally suited for use as a photoanode material in photoelectrochemical (PEC) conversion of solar light into hydrogen fuel via water splitting. However, low hole mobility, short hole lifetime, high density of surface states, and slow kinetics for oxygen evolution at the α-Fe2O3/electrolyte interface have limited the PEC performance of α-Fe2O3 photoanodes to date. Along with numerous reports on doping and nanostructuring of α-Fe2O3, increased attention has been paid to α-Fe2O3 heterostructure design for improved PEC performance. This review article provides an overview of four main approaches to rational heterostructure design: coupling α-Fe2O3 with (1) an n- or p-type semiconductor for promoting charge separation; (2) a nanotextured conductive substrate for efficient charge collection; (3) a surface/interface passivation layer for reduced surface/interface charge recombination; (4) a catalyst for accelerated water oxidation kinetics. The achievements to date demonstrate that high PEC performance may be accessed with these designs. In addition, we review time-resolved laser techniques used to probe the charge carrier dynamics of these heterostructures. Dynamic studies have provided insight into the mechanisms responsible for the improved PEC performance in these materials and helped to guide continued design of α-Fe2O3 heterostructures for further enhancement of PEC water splitting. As summarized in this review article, rational heterostructure design is a promising strategy to push forward the application of α-Fe2O3 for potential low cost and high efficiency solar hydrogen conversion. A better fundamental understanding of the charge carrier dynamics in these structures in turn helps to guide and improve the heterostructure design.

413 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the various roles of these 2D materials, such as enhanced light harvesting, suitable band edge alignment, facilitated charge separation, and stability during the water splitting reaction, in various SC/2D photoelectrode and photocatalytic systems.
Abstract: Hydrogen (H2) production via solar water splitting is one of the most ideal strategies for providing sustainable fuel because this requires only water and sunlight. In achieving high-yield production of hydrogen as a recyclable energy carrier, the nanoscale design of semiconductor (SC) materials plays a pivotal role in both photoelectrochemical (PEC) and photocatalytic (PC) water splitting reactions. In this context, the advent of two-dimensional (2D) materials with remarkable electronic and optical characteristics has attracted great attention for their application to PEC/PC systems. The elaborate design of combined 2D layered materials interfaced with other SCs can markedly enhance the PEC/PC efficiencies via bandgap alteration and heterojunction formation. Three classes of 2D materials including graphene, transition metal dichalcogenides (TMDs), and graphitic carbon nitride (g-C3N4), and their main roles in the photoelectrocatalytic production of H2, are discussed in detail herein. We highlight the various roles of these 2D materials, such as enhanced light harvesting, suitable band edge alignment, facilitated charge separation, and stability during the water splitting reaction, in various SC/2D photoelectrode and photocatalytic systems. The roles of emerging 2D nanomaterials, such as 2D metal oxyhalides, 2D metal oxides, and layered double hydroxides, in PEC H2 production are also discussed.

338 citations