scispace - formally typeset
Search or ask a question
Author

Prakash Koonath

Bio: Prakash Koonath is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Silicon & Silicon photonics. The author has an hindex of 17, co-authored 44 publications receiving 2693 citations.

Papers
More filters
Journal ArticleDOI
13 Dec 2007-Nature
TL;DR: This work reports the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation—a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input.
Abstract: Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrodinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.

2,173 citations

Journal ArticleDOI
TL;DR: Results suggest that at low peak power levels the system is governed by Kerr nonlinearities, while as the input power levels increase the free carrier effects becomes dominant.
Abstract: First demonstration of cross phase modulation based interferometric switch is presented in silicon on insulator waveguides. By using Mach-Zehnder interferometric configuration we experimentally demonstrate switching of CW signal ~25 nm away from the pump laser. We present the effect of free carrier accumulation on switching. Additionally, we theoretically analyze the transient effects and degradations due to free carrier absorption, free carrier refraction and two photon absorption effects. Results suggest that at low peak power levels the system is governed by Kerr nonlinearities. As the input power levels increase the free carrier effects becomes dominant. Effect of free carrier generation on continuum generation and power transfer also theoretically analyzed and spectral broadening factor for high input power levels is estimated.

252 citations

Journal ArticleDOI
TL;DR: In this article, a monolithic CMOS compatible process has been developed to realize vertically integrated devices in silicon, which involves the implantation of an oxygen into a patterned silicon substrate to form buried guiding structures.
Abstract: A monolithic CMOS compatible process has been developed to realize vertically integrated devices in silicon. The method involves the implantation of an oxygen into a patterned silicon substrate to form buried guiding structures. These buried devices are separated from a surface silicon layer by an intervening layer of silicon dioxide formed through the implantation process. Photolithography and etching is used to define devices on the surface silicon layer. The method has been utilized to realize the vertically coupled microdisk resonators and a variety of microresonator-based integrated optical elements. A new method for extraction of the unloaded Q of a cavity from its measured spectrum is also described.

57 citations

Journal ArticleDOI
TL;DR: In this paper, a multistage optical filter with coupled microdisks on two subsurface silicon layers with bus waveguides on the surface (3rd) layer is presented.
Abstract: Three-dimensionally (3-D) integrated photonic structures in multiple layers of silicon are reported. Implantation of oxygen ions into a silicon-on-insulator substrate with a patterned thermal oxide mask, followed by a high temperature anneal, creates photonic structures on 3-D integrated layers of silicon. This process is combined with epitaxial growth to achieve devices on three vertically integrated layers of silicon. As a demonstration vehicle, we report a multistage optical filter that comprises of coupled microdisks on two subsurface silicon layers with bus waveguides on the surface (3rd) layer. The optical filter shows extinction ratios in excess of 14 dB, with excess insertion loss of less than 1 dB.

55 citations

Journal ArticleDOI
TL;DR: The first observation of spontaneous Raman emission, stimulated amplification, and lasing in a SiGe waveguide is described and a 40 GHz frequency downshift is observed in the Raman spectrum compared to that of a silicon waveguide.
Abstract: We describe the first observation of spontaneous Raman emission, stimulated amplification, and lasing in a SiGe waveguide. A pulsed optical gain of 16dB and a lasing threshold of 25 W peak pulse power (20 mW average) is observed for a Si1-xGex waveguide with x=7.5%. At the same time, a 40 GHz frequency downshift is observed in the Raman spectrum compared to that of a silicon waveguide. The spectral shift can be attributed to the combination of composition- and strain-induced shift in the optical phonon frequency. The prospect of Germanium-Silicon-on-Oxide as a flexible Raman medium is discussed.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA).
Abstract: The pace of the development of silicon photonics has quickened since 2004 due to investment by industry and government. Commercial state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55-mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA). The preliminary results indicate that the silicon photonics are truly CMOS compatible. RD however, lasing has not yet been attained. The new paradigm for the Si-based photonic and optoelectric integrated circuits is that these chip-scale networks, when suitably designed, will operate at a wavelength anywhere within the broad spectral range of 1.2-100 mum, with cryocooling needed in some cases

1,789 citations

Journal Article
TL;DR: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates as mentioned in this paper, however, any optical solution must be based on low-cost technologies if it is to be applied to the mass market.
Abstract: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications

1,479 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Abstract: Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.

1,267 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
Abstract: Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications. This article reviews recent progress in the use of silicon nitride and Hydex as non-silicon-based CMOS-compatible platforms for nonlinear optics. New capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement using these materials, and their potential future impact and challenges are covered.

1,218 citations

Journal ArticleDOI
TL;DR: The Peregrine soliton was observed experimentally for the first time by using femtosecond pulses in an optical fiber as mentioned in this paper, which gave some insight into freak waves that can appear out of nowhere before simply disappearing.
Abstract: The Peregrine soliton — a wave localized in both space and time — is now observed experimentally for the first time by using femtosecond pulses in an optical fibre. The results give some insight into freak waves that can appear out of nowhere before simply disappearing.

1,158 citations