Author

# Pranab Kumar Sen

Other affiliations: Indian Statistical Institute, Academia Sinica, University of Calcutta ...read more

Bio: Pranab Kumar Sen is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topic(s): Estimator & Nonparametric statistics. The author has an hindex of 51, co-authored 570 publication(s) receiving 19997 citation(s). Previous affiliations of Pranab Kumar Sen include Indian Statistical Institute & Academia Sinica.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: In this article, a simple and robust estimator of regression coefficient β based on Kendall's rank correlation tau is studied, where the point estimator is the median of the set of slopes (Yj - Yi )/(tj-ti ) joining pairs of points with ti ≠ ti.

Abstract: The least squares estimator of a regression coefficient β is vulnerable to gross errors and the associated confidence interval is, in addition, sensitive to non-normality of the parent distribution. In this paper, a simple and robust (point as well as interval) estimator of β based on Kendall's [6] rank correlation tau is studied. The point estimator is the median of the set of slopes (Yj - Yi )/(tj-ti ) joining pairs of points with ti ≠ ti , and is unbiased. The confidence interval is also determined by two order statistics of this set of slopes. Various properties of these estimators are studied and compared with those of the least squares and some other nonparametric estimators.

6,342 citations

•

[...]

01 Jan 1967

TL;DR: In this article, the authors present an elementary theory of rank tests and a set of properties of rank estimators, including asymptotic optimality and efficiency, as well as non-null distributions.

Abstract: Introduction and Coverage. Preliminaries. Elementary Theory of Rank Tests. Selected Rank Tests. Computation of Null Exact Distributions. Limiting Null Distributions. Limiting Non-Null Distributions. Asymptotic Optimality and Efficiency. Rank Estimates and Asymptotic Linearity.

1,636 citations

•

[...]

01 Jan 1971

742 citations

•

[...]

TL;DR: This text bridges the gap between sound theoretcial developments and practical, fruitful methodology by providing solid justification for standard symptotic statistical methods.

Abstract: This text bridges the gap between sound theoretcial developments and practical, fruitful methodology by providing solid justification for standard symptotic statistical methods. It contains a unified survey of standard large sample theory and provides access to more complex statistical models that arise in diverse practical applications.

369 citations

•

[...]

24 Apr 1991

TL;DR: A formal theory in which optimal tests are derived for simple statistical hypotheses in such a framework was developed by Abraham Wald in the early 20th century as mentioned in this paper, where the sample size depends in a random manner on the accumulating data.

Abstract: Sequential analysis refers to the body of statistical theory and methods where the sample size may depend in a random manner on the accumulating data. A formal theory in which optimal tests are derived for simple statistical hypotheses in such a framework was developed by Abraham Wald in the early 1

343 citations

##### Cited by

More filters

••

[...]

Quintiles

^{1}TL;DR: A nonparametric approach to the analysis of areas under correlated ROC curves is presented, by using the theory on generalized U-statistics to generate an estimated covariance matrix.

Abstract: Methods of evaluating and comparing the performance of diagnostic tests are of increasing importance as new tests are developed and marketed. When a test is based on an observed variable that lies on a continuous or graded scale, an assessment of the overall value of the test can be made through the use of a receiver operating characteristic (ROC) curve. The curve is constructed by varying the cutpoint used to determine which values of the observed variable will be considered abnormal and then plotting the resulting sensitivities against the corresponding false positive rates. When two or more empirical curves are constructed based on tests performed on the same individuals, statistical analysis on differences between curves must take into account the correlated nature of the data. This paper presents a nonparametric approach to the analysis of areas under correlated ROC curves, by using the theory on generalized U-statistics to generate an estimated covariance matrix.

13,555 citations

•

[...]

TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.

Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

12,326 citations

•

[...]

21 Mar 2002

TL;DR: An essential textbook for any student or researcher in biology needing to design experiments, sample programs or analyse the resulting data is as discussed by the authors, covering both classical and Bayesian philosophies, before advancing to the analysis of linear and generalized linear models Topics covered include linear and logistic regression, simple and complex ANOVA models (for factorial, nested, block, split-plot and repeated measures and covariance designs), and log-linear models Multivariate techniques, including classification and ordination, are then introduced.

Abstract: An essential textbook for any student or researcher in biology needing to design experiments, sample programs or analyse the resulting data The text begins with a revision of estimation and hypothesis testing methods, covering both classical and Bayesian philosophies, before advancing to the analysis of linear and generalized linear models Topics covered include linear and logistic regression, simple and complex ANOVA models (for factorial, nested, block, split-plot and repeated measures and covariance designs), and log-linear models Multivariate techniques, including classification and ordination, are then introduced Special emphasis is placed on checking assumptions, exploratory data analysis and presentation of results The main analyses are illustrated with many examples from published papers and there is an extensive reference list to both the statistical and biological literature The book is supported by a website that provides all data sets, questions for each chapter and links to software

9,098 citations

••

[...]

TL;DR: In this paper, it was shown that a simple FDR controlling procedure for independent test statistics can also control the false discovery rate when test statistics have positive regression dependency on each of the test statistics corresponding to the true null hypotheses.

Abstract: Benjamini and Hochberg suggest that the false discovery rate may be the appropriate error rate to control in many applied multiple testing problems. A simple procedure was given there as an FDR controlling procedure for independent test statistics and was shown to be much more powerful than comparable procedures which control the traditional familywise error rate. We prove that this same procedure also controls the false discovery rate when the test statistics have positive regression dependency on each of the test statistics corresponding to the true null hypotheses. This condition for positive dependency is general enough to cover many problems of practical interest, including the comparisons of many treatments with a single control, multivariate normal test statistics with positive correlation matrix and multivariate $t$. Furthermore, the test statistics may be discrete, and the tested hypotheses composite without posing special difficulties. For all other forms of dependency, a simple conservative modification of the procedure controls the false discovery rate. Thus the range of problems for which a procedure with proven FDR control can be offered is greatly increased.

8,199 citations

••

[...]

TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.

Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,364 citations