scispace - formally typeset
Search or ask a question
Author

Prashant Kumar Singh

Bio: Prashant Kumar Singh is an academic researcher from Allahabad University. The author has contributed to research in topics: Photoluminescence & Quantum dot. The author has an hindex of 9, co-authored 13 publications receiving 1471 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation ofZn as well as the functioning of the AsA–GSH cycle.
Abstract: The present study investigates ameliorative effect of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings which was coincided with reduced photosynthetic efficiency (Fv/Fm and qP) due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation has partially mitigated the ZnONPs-mediated toxicity by modulation of photosynthetic activity and Zn accumulation in xylem and phloem sap. Further, the results reveal that ZnONPs treatments enhanced level of hydrogen peroxide (H2O2) and hence lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the ascorbate-glutatione cycle (AsA-GSH) enzymes: ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), and its associated metabolites: reduced ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA-GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting role of NO released from SNP in ameliorating ZnONPs toxicity. Overall the results of the present study have shown about implication of NO in the reducing ZnONPs toxicity through the regulation of accumulation of Zn, and functioning of the AsA-GSH cycle.

1,119 citations

Journal ArticleDOI
TL;DR: It is suggested that AgNps treatments adversely decreased growth, pigments and photosynthesis due to enhanced level of Ag and oxidative stress, but SNP addition successfully ameliorates adverse impact of AgNPS on pea seedlings by regulating the Ag uptake, antioxidant system, oxidative stress and anatomical structures of root and shoot.

268 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented synthesis of ZnO quantum dots (QD) vis-a-vis symmetrically dispersed quantum dots embedded in SiO2 matrix and discussed their optical properties to understand the role of surface effects.

44 citations

Journal ArticleDOI
TL;DR: Water soluble, uniform-sized ZnS:Mn2+ nanocrystals show broad spectrum antibacterial activity against both types of bacteria having an MIC value of 100 ng ml-1 for B. subtilis.
Abstract: Water soluble, uniform-sized ZnS:Mn2+ nanocrystals (NCs) have been prepared using a simple co-precipitation method with a methanol and water binary mixture as a reaction medium. The structure of the prepared ZnS:Mn2+ NCs is cubic with a mean size distribution of 3–5 nm. Photoluminescence (PL) studies showed emission at ∼612 nm, which is 22 nm red shifted as compared with the reported literature. This red shift could be attributed to the observed distortion in the imaged lattice plane. The capping effect of pepsin, citric acid and biotin on the optical properties of ZnS:Mn2+ NCs has been examined and the maximum enhancement in PL Intensity was found in the case of biotin. The synthesised ZnS:Mn2+ NCs were characterized by X-ray Diffraction (XRD), transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS) for investigation of their structural properties. Because of the high PL intensity, biotin capped ZnS:Mn2+ NCs were further investigated for their anti-bacterial activity against gram negative and gram positive bacteria. These NCs show broad spectrum antibacterial activity against both types of bacteria having an MIC value of 100 ng ml−1 for B. subtilis.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation ofZn as well as the functioning of the AsA–GSH cycle.
Abstract: The present study investigates ameliorative effect of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings which was coincided with reduced photosynthetic efficiency (Fv/Fm and qP) due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation has partially mitigated the ZnONPs-mediated toxicity by modulation of photosynthetic activity and Zn accumulation in xylem and phloem sap. Further, the results reveal that ZnONPs treatments enhanced level of hydrogen peroxide (H2O2) and hence lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the ascorbate-glutatione cycle (AsA-GSH) enzymes: ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), and its associated metabolites: reduced ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA-GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting role of NO released from SNP in ameliorating ZnONPs toxicity. Overall the results of the present study have shown about implication of NO in the reducing ZnONPs toxicity through the regulation of accumulation of Zn, and functioning of the AsA-GSH cycle.

1,119 citations

Journal ArticleDOI
TL;DR: The current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture are covered.
Abstract: Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. The application of nanotechnology to agriculture and food industries is resonant increased encumbrance because of the potential benefits ranging from enhanced food quality, safety to reduced agricultural inputs and enriched absorbing nanoscale nutrients from the soil. Agriculture, food and natural resources are a part of those challenges like sustainability, susceptibility, human health and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interest of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants.This study provides a review of the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

813 citations

Journal ArticleDOI
TL;DR: Biosynthesis and Bioconjugation to Biomedical Application Juan Zhou,‡,§ Yong Yang, and Chun-yang Zhang*,†,§ †College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education.
Abstract: Biosynthesis and Bioconjugation to Biomedical Application Juan Zhou,‡,§ Yong Yang, and Chun-yang Zhang*,†,§ †College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China ‡State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

528 citations

Journal ArticleDOI
TL;DR: The present review summarizes uptake, translocation and accumulation of nanomaterials and their recognized ways of phytotoxicity on morpho-anatomical, physiological, biochemical and molecular traits of plants and examines the intrinsic detoxification mechanisms in plants in light ofnanomaterial accumulation within plant cells or parts.

521 citations

Journal ArticleDOI
TL;DR: This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism and proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticle are spread in plants.
Abstract: An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and their accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarizes the current understanding and the future possibilities of plant-nanoparticle research.

474 citations