scispace - formally typeset
Search or ask a question
Author

Prashant V. Desai

Bio: Prashant V. Desai is an academic researcher from Eli Lilly and Company. The author has contributed to research in topics: Docking (molecular) & Cysteine protease. The author has an hindex of 27, co-authored 60 publications receiving 2677 citations. Previous affiliations of Prashant V. Desai include University of California, San Francisco & University of Mississippi.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors showed that telmisartan, a structurally unique angiotensin II receptor antagonist used for the treatment of hypertension, can function as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) and reduce glucose, insulin, and triglyceride levels in rats fed a high-fat, high-carbohydrate diet.
Abstract: The metabolic syndrome is a common precursor of cardiovascular disease and type 2 diabetes that is characterized by the clustering of insulin resistance, dyslipidemia, and increased blood pressure. In humans, mutations in the peroxisome proliferator-activated receptor-gamma (PPARgamma) have been reported to cause the full-blown metabolic syndrome, and drugs that activate PPARgamma have proven to be effective agents for the prevention and treatment of insulin resistance and type 2 diabetes. Here we report that telmisartan, a structurally unique angiotensin II receptor antagonist used for the treatment of hypertension, can function as a partial agonist of PPARgamma; influence the expression of PPARgamma target genes involved in carbohydrate and lipid metabolism; and reduce glucose, insulin, and triglyceride levels in rats fed a high-fat, high-carbohydrate diet. None of the other commercially available angiotensin II receptor antagonists appeared to activate PPARgamma when tested at concentrations typically achieved in plasma with conventional oral dosing. In contrast to ordinary antihypertensive and antidiabetic agents, molecules that can simultaneously block the angiotensin II receptor and activate PPARgamma have the potential to treat both hemodynamic and biochemical features of the metabolic syndrome and could provide unique opportunities for the prevention and treatment of diabetes and cardiovascular disease in high-risk populations.

1,104 citations

Journal ArticleDOI
TL;DR: Virtual screening was performed in an attempt to identify novel druglike nonpeptide inhibitors of parasitic cysteine proteases, and four compounds showed inhibition of both the malarial cystein proteases as well as Leishmania donovani cysteined protease.
Abstract: Trypanosomiasis, leishmaniasis, and malaria are major parasitic diseases in developing countries. The existing chemotherapy of these diseases suffers from lack of safe and effective drugs and/or the presence of widespread drug resistance. Cysteine proteases are exciting novel targets for antiparasitic drug design. Virtual screening was performed in an attempt to identify novel druglike nonpeptide inhibitors of parasitic cysteine proteases. The ChemBridge database consisting of approximately 241 000 compounds was screened against homology models of falcipain-2 and falcipain-3 in three consecutive stages of docking. A total of 24 diverse inhibitors were identified from an initial group of 84, of which 12 compounds appeared to be dual inhibitors of falcipain-2 and falcipain-3. Four compounds showed inhibition of both the malarial cysteine proteases as well as Leishmania donovani cysteine protease.

108 citations

Journal ArticleDOI
TL;DR: The benefits of considering the relative strengths of individual H-bonds and introducing intramolecular H- bonds to increase membrane permeability and/or decrease P-gp efflux are illustrated.

106 citations

Journal ArticleDOI
TL;DR: The study suggests the possibility of developing artemisinin analogues as potential drug candidates against both malaria and leishmaniasis.
Abstract: Artemisinin (1) and its analogues have been well studied for their antimalarial activity. Here we present the antimalarial activity of some novel C-9-modified artemisinin analogues synthesized using artemisitene as the key intermediate. Further, antileishmanial activity of more than 70 artemisinin derivatives against Leishmania donovani promastigotes is described for the first time. A comprehensive structure-activity relationship study using CoMFA is discussed. These analogues exhibited leishmanicidal activity in micromolar concentrations, and the overall activity profile appears to be similar to that against malaria. Substitution at the C-9beta position was shown to improve the activity in both cases. The 10-deoxo derivatives showed better activity compared to the corresponding lactones. In general, compounds with C-9alpha substitution exhibited lower antimalarial as well as antileishmanial activities compared to the corresponding C-9beta analogues. The importance of the peroxide group for the observed activity of these analogues against leishmania was evident from the fact that 1-deoxyartemisinin analogues did not exhibit antileishmanial activity. The study suggests the possibility of developing artemisinin analogues as potential drug candidates against both malaria and leishmaniasis.

93 citations

Journal ArticleDOI
TL;DR: An overview on the benefits, caveats, and impact of in silico ADME-PK should serve as a resource for medicinal Chemists, computational chemists, and DMPK scientists working in drug design to increase their knowledge in the area.
Abstract: In silico tools to investigate absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK) properties of new chemical entities are an integral part of the current industrial drug discovery paradigm. While many companies are active in the field, scientists engaged in this area do not necessarily share the same background and have limited resources when seeking guidance on how to initiate and maintain an in silico ADME-PK infrastructure in an industrial setting. This work summarizes the views of a group of industrial in silico and experimental ADME scientists, participating in the In Silico ADME Working Group, a subgroup of the International Consortium for Innovation through Quality in Pharmaceutical Development (IQ) Drug Metabolism Leadership Group. This overview on the benefits, caveats, and impact of in silico ADME-PK should serve as a resource for medicinal chemists, computational chemists, and DMPK scientists working in drug design to increase their knowledge in the area.

92 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: A number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens are described.
Abstract: This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

2,791 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: The effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography are provided, as well as new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds.
Abstract: The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, 18F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in po...

2,149 citations

Journal ArticleDOI
21 May 2009-Nature
TL;DR: G-protein-coupled receptors mediate most of the authors' physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases.
Abstract: G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein structure and biology. Great progress has been made over the past three decades in understanding diverse GPCRs, from pharmacology to functional characterization in vivo. Recent high-resolution structural studies have provided insights into the molecular mechanisms of GPCR activation and constitutive activity.

1,965 citations