scispace - formally typeset
Search or ask a question
Author

Prashant V. Kamat

Bio: Prashant V. Kamat is an academic researcher from University of Notre Dame. The author has contributed to research in topics: Racism & Excited state. The author has an hindex of 140, co-authored 725 publications receiving 79259 citations. Previous affiliations of Prashant V. Kamat include Indian Institute of Technology Kanpur & Council of Scientific and Industrial Research.


Papers
More filters
DOI
01 Dec 1995
TL;DR: In this article, the coupled OTE/SnO2/CdSe electrodes have been prepared by sequential deposition of SnO2 and CdSe colloidal films onto an optically transparent electrode (OTE), and their electrochemical and photoelectrochemical properties have been studied.
Abstract: The coupled OTE/SnO2/CdSe electrodes have been prepared by sequential deposition of SnO2 and CdSe colloidal films onto an optically transparent electrode (OTE), and their electrochemical and photoelectrochemical properties have been studied. It is observed that coupling SnO2 film with CdSe particles has extended its photoresponse into the visible. The incident photon-to-photocurrent conversion efficiency (IPCE) for CdSe film which is doubled when coupled with SnO2 film, shows a better charge separation in the coupled film. The cyclic voltammetric results of [Fe(CN)6]3−/4− with OTE, OTE/CdSe and OTE/SnO2/CdSe electrodes suggest that the coupling of CdSe with SnO2 creates an energy barrier that hinders electron flow from SnO2 to CdSe and into the electrolyte. Photocurrent stability of the cell employing OTE/SnO2/CdSe electrode has been improved by increasing the thickness of SnO2 particulate film. The photoelectrochemical performance of the cell has been evaluated and a net conversion efficiency of 2.25% has been obtained

4 citations

Journal ArticleDOI
TL;DR: In this article, the reduction potentials of 1, 5, 10 and 16 were measured using cyclic voltammetric studies and the radical anions were also generated pulse radiolytically in methanol.
Abstract: The reaction of tetracyclone (1) with potassium in THF gave a mixture of benzoic acid (4), tetraphenylfuran (5) and cis-1,2-dibenzoylstilbene (6). The reaction of 1 with potassium in oxygen-saturated THF gave a mixture of 2-hydroxy-2,4,5-triphenyl-3(2H)furanone (3), 4, 5 and 6, whereas the reaction of 1 with potassium superoxide gave a moderate yield of 3,4,5,6-tetraphenyl-2-pyrartone (7), besides 3, 4, 5, and 6. The reaction of tetraphenylfuran (5) itself with potassium in THF gave a mixture of 6, 1,2,3,4-tetraphenylbutan-1-one (9), 2,3-diphenyl-1-indenone (10) and 2,3-epoxy-4-hydroxy-2,3,4-tnphenyltetralone-l (11), whereas practically no reaction occurred on treatment of 5 with potassium superoxide. Treatment of 10 with potassium in THF, however, gave a mixture of 4, dibenzo[a,c]-13-fluorenone (13), 2,3-diphenyl-2-hydroxyl-1-indanone (14) and 2,3-diphenylbenzofuran (15). A similar mixture of products consisting of 4, 13, 14 and 15 was obtained when the reaction of 10 with potassium was carried out in oxygen-saturated THF or when 10 was treated with potassium superoxide. Treatment of 2,3-diphenyl-2,3-epoxy-1-indanone (16) with potassium on the other hand, gave 10 in excellent yield. Cyclic voltammetric studies have been carried out to measure the reduction potentials of 1, 5, 10 and 16 in the generation of their radical anions. The radical anions of 1, 5, 10 and 16 were also generated pulse radiolytically in methanol and their spectra showed absorption maxima in the region 320–380 nm.

4 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
Ryoji Asahi1, Takeshi Morikawa1, T. Ohwaki1, Koyu Aoki1, Y. Taga1 
13 Jul 2001-Science
TL;DR: Film and powders of TiO2-x Nx have revealed an improvement over titanium dioxide (TiO2) under visible light in optical absorption and photocatalytic activity such as photodegradations of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface.
Abstract: To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Films and powders of TiO 2- x N x have revealed an improvement over titanium dioxide (TiO 2 ) under visible light (wavelength 2 has proven to be indispensable for band-gap narrowing and photocatalytic activity, as assessed by first-principles calculations and x-ray photoemission spectroscopy.

11,402 citations