scispace - formally typeset
Search or ask a question
Author

Prashant V. Kamat

Bio: Prashant V. Kamat is an academic researcher from University of Notre Dame. The author has contributed to research in topics: Racism & Excited state. The author has an hindex of 140, co-authored 725 publications receiving 79259 citations. Previous affiliations of Prashant V. Kamat include Indian Institute of Technology Kanpur & Council of Scientific and Industrial Research.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple, inexpensive synthetic procedure is reported where the composition can be easily modulated frompure CdSe to pure CdS by simply adjusting the Se:S precursor ratio, which allows for tuning of the absorption and emission properties of the nanowires across the visible spectrum.
Abstract: CdS, CdSe, and ternary CdSexS(1–x) are some of the most widely studied II–VI semiconductors due to their broad range of applications and promising performance in numerous systems. One-dimensional semiconductor nanowires offer the ability to conduct charges efficiently along the length of the wire, which has potential charge transport benefits compared to nanoparticles. Herein, we report a simple, inexpensive synthetic procedure for high quality CdSeS nanowires where the composition can be easily modulated from pure CdSe to pure CdS by simply adjusting the Se:S precursor ratio. This allows for tuning of the absorption and emission properties of the nanowires across the visible spectrum. The CdSeS nanowires have a wurtzite crystal structure and grow along the [001] direction. As measured by femtosecond transient absorption spectroscopy, the short component of the excited state lifetime remains relatively constant at ∼10 ps with increasing Se; however, the contribution of this short lifetime component increa...

41 citations

Journal ArticleDOI
TL;DR: A long-lived charge-separated state, which can be observed even at 900 mus after laser excitation, has been attained in the formanilide-anthraquinone dyad (FA-AQ) in dimethyl sulfoxide, whereas the CS lifetime is shortened significantly to 20 ps in the ferrocene-formanilide (Fc-FA) triad.
Abstract: A long-lived charge-separated (CS) state, which can be observed even at 900 μs after laser excitation, has been attained in the formanilide−anthraquinone dyad (FA-AQ) in dimethyl sulfoxide, whereas the CS lifetime is shortened significantly to 20 ps in the ferrocene−formanilide−anthraquinone triad (Fc-FA-AQ). Such a drastic decrease in the CS lifetime by the addition of a ferrocene moiety to the FA-AQ dyad is ascribed to a decrease in the driving force of back electron transfer and an increase in the reorganization energy of electron transfer despite the longer charge-separation distance. The FA-AQ dyad and the Fc-FA-AQ triad have been employed as components of photovoltaic cells, where composite molecular nanoclusters of the FA-AQ dyad or the Fc-FA-AQ triad with fullerene (C60) are assembled onto a SnO2 electrode using an electrophoretic method. The composite films of the Fc-FA-AQ triad exhibit 10 times smaller values of an incident photon-to-photocurrent efficiency (IPCE) as compared with those of the F...

41 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a complete microscopic account of charge recombination processes in high efficiency hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells.
Abstract: Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the first time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.

41 citations

Journal ArticleDOI
TL;DR: In this paper, dye-modified TiO2 nanoparticles were deposited on nanostructured OTE/SnO2 (OTE: optically transparent electrodes) together with nanoclusters of fullerene (C60) from acetonitrile/toluene (3:1, v/v) using an electrophoretic deposition technique.

40 citations

Journal ArticleDOI
TL;DR: The interfacial electron transfer between excited CsPbBr3 perovskite nanocrystals and metal oxides was elucidated using transient absorption spectroscopy and found to occur with a rate constant in the range of 2-4 × 1010 s-1.
Abstract: Record-breaking efficiency achieved with quantum dot solar cells made of perovskite nanocrystals demands understanding of the excited-state interactions between perovskite nanocrystals and metal oxide electron transport layers. The interfacial electron transfer between excited CsPbBr3 perovskite nanocrystals and metal oxides (TiO2, SnO2, and ZnO) was elucidated using transient absorption spectroscopy and found to occur with a rate constant in the range of 2–4 × 1010 s–1. In an inert atmosphere, back electron transfer helps to maintain the stability of the perovskite nanocrystals. However, the presence of oxygen introduces instability as it scavenges away transferred electrons from the electron-transporting metal oxide, leaving behind holes to accumulate at CsPbBr3 nanocrystals, which in turn induce anodic corrosion. X-ray photoelectron spectroscopy measurements have enabled us to identify PbO as the major photodegraded product. The importance of the surrounding atmosphere and the supporting metal oxide in...

40 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
Ryoji Asahi1, Takeshi Morikawa1, T. Ohwaki1, Koyu Aoki1, Y. Taga1 
13 Jul 2001-Science
TL;DR: Film and powders of TiO2-x Nx have revealed an improvement over titanium dioxide (TiO2) under visible light in optical absorption and photocatalytic activity such as photodegradations of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface.
Abstract: To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Films and powders of TiO 2- x N x have revealed an improvement over titanium dioxide (TiO 2 ) under visible light (wavelength 2 has proven to be indispensable for band-gap narrowing and photocatalytic activity, as assessed by first-principles calculations and x-ray photoemission spectroscopy.

11,402 citations