scispace - formally typeset
Search or ask a question
Author

Prateek Agrawal

Bio: Prateek Agrawal is an academic researcher from Harvard University. The author has contributed to research in topics: Dark matter & Axion. The author has an hindex of 34, co-authored 67 publications receiving 4258 citations. Previous affiliations of Prateek Agrawal include University of Maryland, College Park & Fermilab.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors study constraints imposed by two proposed string Swampland criteria on cosmology and find that inflationary models are generically in tension with these two criteria, and they argue that the universe will undergo a phase transition within a few Hubble times.

573 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1501 moreInstitutions (239)
TL;DR: In this article, the physics opportunities of the Future Circular Collider (FC) were reviewed, covering its e+e-, pp, ep and heavy ion programs, and the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.

407 citations

Journal ArticleDOI
TL;DR: In this paper, a new mechanism for producing the correct relic abundance of dark photon dark matter over a wide range of its mass, extending down to 10 − 20 eV, is presented.

174 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
Markus Ackermann, Andrea Albert1, Brandon Anderson2, W. B. Atwood3, Luca Baldini1, Guido Barbiellini4, Denis Bastieri4, Keith Bechtol5, Ronaldo Bellazzini4, Elisabetta Bissaldi4, Roger Blandford1, E. D. Bloom1, R. Bonino4, Eugenio Bottacini1, T. J. Brandt6, Johan Bregeon7, P. Bruel8, R. Buehler, G. A. Caliandro1, R. A. Cameron1, R. Caputo3, M. Caragiulo4, P. A. Caraveo9, C. Cecchi4, Eric Charles1, A. Chekhtman10, James Chiang1, G. Chiaro11, Stefano Ciprini4, R. Claus1, Johann Cohen-Tanugi7, Jan Conrad2, Alessandro Cuoco4, S. Cutini4, Filippo D'Ammando9, A. De Angelis4, F. de Palma4, R. Desiante4, Seth Digel1, L. Di Venere12, Persis S. Drell1, Alex Drlica-Wagner13, R. Essig14, C. Favuzzi4, S. J. Fegan8, Elizabeth C. Ferrara6, W. B. Focke1, A. Franckowiak1, Yasushi Fukazawa15, Stefan Funk, P. Fusco4, F. Gargano4, Dario Gasparrini4, Nicola Giglietto4, Francesco Giordano4, Marcello Giroletti9, T. Glanzman1, G. Godfrey1, G. A. Gomez-Vargas4, I. A. Grenier16, Sylvain Guiriec6, M. Gustafsson17, E. Hays6, John W. Hewitt18, D. Horan8, T. Jogler1, Gudlaugur Johannesson19, M. Kuss4, Stefan Larsson2, Luca Latronico4, Jingcheng Li20, L. Li2, M. Llena Garde2, Francesco Longo4, F. Loparco4, P. Lubrano4, D. Malyshev1, M. Mayer, M. N. Mazziotta4, Julie McEnery6, Manuel Meyer2, Peter F. Michelson1, Tsunefumi Mizuno15, A. A. Moiseev21, M. E. Monzani1, A. Morselli4, S. Murgia22, E. Nuss7, T. Ohsugi15, M. Orienti9, E. Orlando1, J. F. Ormes23, David Paneque1, J. S. Perkins6, Melissa Pesce-Rollins1, F. Piron7, G. Pivato4, T. A. Porter1, S. Rainò4, R. Rando4, M. Razzano4, A. Reimer1, Olaf Reimer1, Steven Ritz3, Miguel A. Sánchez-Conde2, André Schulz, Neelima Sehgal24, Carmelo Sgrò4, E. J. Siskind, F. Spada4, Gloria Spandre4, P. Spinelli4, Louis E. Strigari25, Hiroyasu Tajima1, Hiromitsu Takahashi15, J. B. Thayer1, L. Tibaldo1, Diego F. Torres20, Eleonora Troja6, Giacomo Vianello1, Michael David Werner, Brian L Winer26, K. S. Wood27, Matthew Wood1, Gabrijela Zaharijas4, Stephan Zimmer2 
TL;DR: In this article, the authors report on γ-ray observations of the Milky-Way satellite galaxies (dSphs) based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis.
Abstract: The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.

1,166 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a measurement of the Hubble constant and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays.
Abstract: We present a measurement of the Hubble constant ($H_{0}$) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat $\Lambda$CDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}$, a 2.4% precision measurement, in agreement with local measurements of $H_{0}$ from type Ia supernovae calibrated by the distance ladder, but in $3.1\sigma$ tension with $Planck$ observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in $5.3\sigma$ tension with $Planck$ CMB determinations of $H_{0}$ in flat $\Lambda$CDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat $\Lambda$CDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from $Planck$, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with $Planck$. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our $H_0$ inference to cosmological model assumptions. For six different cosmological models, our combined inference on $H_{0}$ ranges from $\sim73$-$78~\mathrm{km~s^{-1}~Mpc^{-1}}$, which is consistent with the local distance ladder constraints.

875 citations

Journal ArticleDOI
TL;DR: The breaking of electroweak symmetry, and origin of the associated "weak scale" vweak = 1/ q 2 √ 2GF = 175 GeV, may be due to a new strong interaction as mentioned in this paper.

838 citations