scispace - formally typeset
Search or ask a question
Author

Prateek Saxena

Bio: Prateek Saxena is an academic researcher from National University of Singapore. The author has contributed to research in topics: Web application & Cryptocurrency. The author has an hindex of 39, co-authored 121 publications receiving 9198 citations. Previous affiliations of Prateek Saxena include Microsoft & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI
24 Oct 2016
TL;DR: This paper investigates the security of running smart contracts based on Ethereum in an open distributed network like those of cryptocurrencies, and proposes ways to enhance the operational semantics of Ethereum to make contracts less vulnerable.
Abstract: Cryptocurrencies record transactions in a decentralized data structure called a blockchain. Two of the most popular cryptocurrencies, Bitcoin and Ethereum, support the feature to encode rules or scripts for processing transactions. This feature has evolved to give practical shape to the ideas of smart contracts, or full-fledged programs that are run on blockchains. Recently, Ethereum's smart contract system has seen steady adoption, supporting tens of thousands of contracts, holding millions dollars worth of virtual coins. In this paper, we investigate the security of running smart contracts based on Ethereum in an open distributed network like those of cryptocurrencies. We introduce several new security problems in which an adversary can manipulate smart contract execution to gain profit. These bugs suggest subtle gaps in the understanding of the distributed semantics of the underlying platform. As a refinement, we propose ways to enhance the operational semantics of Ethereum to make contracts less vulnerable. For developers writing contracts for the existing Ethereum system, we build a symbolic execution tool called Oyente to find potential security bugs. Among 19, 336 existing Ethereum contracts, Oyente flags 8, 833 of them as vulnerable, including the TheDAO bug which led to a 60 million US dollar loss in June 2016. We also discuss the severity of other attacks for several case studies which have source code available and confirm the attacks (which target only our accounts) in the main Ethereum network.

1,232 citations

Posted Content
TL;DR: Oyente as discussed by the authors is a symbolic execution tool to find potential security bugs in the execution of smart contracts based on Ethereum in an open distributed network like those of Bitcoin and Ethereum.
Abstract: Cryptocurrencies record transactions in a decentralized data structure called a blockchain. Two of the most popular cryptocurrencies, Bitcoin and Ethereum, support the feature to encode rules or scripts for processing transactions. This feature has evolved to give practical shape to the ideas of smart contracts, or full-fledged programs that are run on blockchains. Recently, Ethereum's smart contract system has seen steady adoption, supporting tens of thousands of contracts, holding millions dollars worth of virtual coins. In this paper, we investigate the security of running smart contracts based on Ethereum in an open distributed network like those of cryptocurrencies. We introduce several new security problems in which an adversary can manipulate smart contract execution to gain profit. These bugs suggest subtle gaps in the understanding of the distributed semantics of the underlying platform. As a refinement, we propose ways to enhance the operational semantics of Ethereum to make contracts less vulnerable. For developers writing contracts for the existing Ethereum system, we build a symbolic execution tool called Oyente to find potential security bugs. Among 19, 336 existing Ethereum contracts, Oyente flags 8, 833 of them as vulnerable, including the TheDAO bug which led to a 60 million US dollar loss in June 2016. We also discuss the severity of other attacks for several case studies which have source code available and confirm the attacks (which target only our accounts) in the main Ethereum network.

1,141 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries, and scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO's theoretical scaling properties.
Abstract: Cryptocurrencies, such as Bitcoin and 250 similar alt-coins, embody at their core a blockchain protocol --- a mechanism for a distributed network of computational nodes to periodically agree on a set of new transactions. Designing a secure blockchain protocol relies on an open challenge in security, that of designing a highly-scalable agreement protocol open to manipulation by byzantine or arbitrarily malicious nodes. Bitcoin's blockchain agreement protocol exhibits security, but does not scale: it processes 3--7 transactions per second at present, irrespective of the available computation capacity at hand. In this paper, we propose a new distributed agreement protocol for permission-less blockchains called ELASTICO. ELASTICO scales transaction rates almost linearly with available computation for mining: the more the computation power in the network, the higher the number of transaction blocks selected per unit time. ELASTICO is efficient in its network messages and tolerates byzantine adversaries of up to one-fourth of the total computational power. Technically, ELASTICO uniformly partitions or parallelizes the mining network (securely) into smaller committees, each of which processes a disjoint set of transactions (or "shards"). While sharding is common in non-byzantine settings, ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries. Our scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO's theoretical scaling properties.

1,036 citations

Book ChapterDOI
22 Feb 2016
TL;DR: In this article, the authors analyze how fundamental and circumstantial bottlenecks in Bitcoin limit the ability of its current peer-to-peer overlay network to support substantially higher throughputs and lower latencies.
Abstract: The increasing popularity of blockchain-based cryptocurrencies has made scalability a primary and urgent concern. We analyze how fundamental and circumstantial bottlenecks in Bitcoin limit the ability of its current peer-to-peer overlay network to support substantially higher throughputs and lower latencies. Our results suggest that reparameterization of block size and intervals should be viewed only as a first increment toward achieving next-generation, high-load blockchain protocols, and major advances will additionally require a basic rethinking of technical approaches. We offer a structured perspective on the design space for such approaches. Within this perspective, we enumerate and briefly discuss a number of recently proposed protocol ideas and offer several new ideas and open challenges.

831 citations

Book ChapterDOI
16 Dec 2008
TL;DR: An overview of the BitBlaze project, a new approach to computer security via binary analysis that focuses on building a unified binary analysis platform and using it to provide novel solutions to a broad spectrum of different security problems.
Abstract: In this paper, we give an overview of the BitBlaze project, a new approach to computer security via binary analysis. In particular, BitBlaze focuses on building a unified binary analysis platform and using it to provide novel solutions to a broad spectrum of different security problems. The binary analysis platform is designed to enable accurate analysis, provide an extensible architecture, and combines static and dynamic analysis as well as program verification techniques to satisfy the common needs of security applications. By extracting security-related properties from binary programs directly, BitBlaze enables a principled, root-cause based approach to computer security, offering novel and effective solutions, as demonstrated with over a dozen different security applications.

781 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: TaintDroid as mentioned in this paper is an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data by leveraging Android's virtualized execution environment.
Abstract: Today’s smartphone operating systems frequently fail to provide users with visibility into how third-party applications collect and share their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid enables realtime analysis by leveraging Android’s virtualized execution environment. TaintDroid incurs only 32p performance overhead on a CPU-bound microbenchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, in our 2010 study we found 20 applications potentially misused users’ private information; so did a similar fraction of the tested applications in our 2012 study. Monitoring the flow of privacy-sensitive data with TaintDroid provides valuable input for smartphone users and security service firms seeking to identify misbehaving applications.

2,983 citations

Proceedings ArticleDOI
23 Apr 2018
TL;DR: This paper describes Fabric, its architecture, the rationale behind various design decisions, its most prominent implementation aspects, as well as its distributed application programming model, and shows that Fabric achieves end-to-end throughput of more than 3500 transactions per second in certain popular deployment configurations.
Abstract: Fabric is a modular and extensible open-source system for deploying and operating permissioned blockchains and one of the Hyperledger projects hosted by the Linux Foundation (www.hyperledger.org). Fabric is the first truly extensible blockchain system for running distributed applications. It supports modular consensus protocols, which allows the system to be tailored to particular use cases and trust models. Fabric is also the first blockchain system that runs distributed applications written in standard, general-purpose programming languages, without systemic dependency on a native cryptocurrency. This stands in sharp contrast to existing block-chain platforms that require "smart-contracts" to be written in domain-specific languages or rely on a cryptocurrency. Fabric realizes the permissioned model using a portable notion of membership, which may be integrated with industry-standard identity management. To support such flexibility, Fabric introduces an entirely novel blockchain design and revamps the way blockchains cope with non-determinism, resource exhaustion, and performance attacks. This paper describes Fabric, its architecture, the rationale behind various design decisions, its most prominent implementation aspects, as well as its distributed application programming model. We further evaluate Fabric by implementing and benchmarking a Bitcoin-inspired digital currency. We show that Fabric achieves end-to-end throughput of more than 3500 transactions per second in certain popular deployment configurations, with sub-second latency, scaling well to over 100 peers.

2,813 citations

Proceedings ArticleDOI
04 Oct 2010
TL;DR: Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, this work found 68 instances of misappropriation of users' location and device identification information across 20 applications.
Abstract: Today's smartphone operating systems frequently fail to provide users with adequate control over and visibility into how third-party applications use their private data. We address these shortcomings with TaintDroid, an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data. TaintDroid provides realtime analysis by leveraging Android's virtualized execution environment. TaintDroid incurs only 14% performance overhead on a CPU-bound micro-benchmark and imposes negligible overhead on interactive third-party applications. Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, we found 68 instances of potential misuse of users' private information across 20 applications. Monitoring sensitive data with TaintDroid provides informed use of third-party applications for phone users and valuable input for smartphone security service firms seeking to identify misbehaving applications.

2,379 citations

Journal ArticleDOI
03 Oct 2016-PLOS ONE
TL;DR: The objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective, and recommendations on future research directions are provided for researchers.
Abstract: Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers.

1,528 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: This paper introduces a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains and devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints.
Abstract: Proof of Work (PoW) powered blockchains currently account for more than 90% of the total market capitalization of existing digital cryptocurrencies. Although the security provisions of Bitcoin have been thoroughly analysed, the security guarantees of variant (forked) PoW blockchains (which were instantiated with different parameters) have not received much attention in the literature. This opens the question whether existing security analysis of Bitcoin's PoW applies to other implementations which have been instantiated with different consensus and/or network parameters. In this paper, we introduce a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains. Based on our framework, we devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints such as network propagation, different block sizes, block generation intervals, information propagation mechanism, and the impact of eclipse attacks. Our framework therefore allows us to capture existing PoW-based deployments as well as PoW blockchain variants that are instantiated with different parameters, and to objectively compare the tradeoffs between their performance and security provisions.

1,258 citations