scispace - formally typeset
Search or ask a question
Author

Pratyusha Kalluri

Bio: Pratyusha Kalluri is an academic researcher from Stanford University. The author has contributed to research in topics: Computer science & Sociotechnical system. The author has an hindex of 5, co-authored 6 publications receiving 209 citations.

Papers
More filters
Proceedings Article
11 Apr 2019
TL;DR: Exploiting duality, this work introduces a method that optimizes the model parameters as well as the expressiveness-fairness trade-off and achieves higher expressiveness at a lower computational cost.
Abstract: Learning data representations that are transferable and are fair with respect to certain protected attributes is crucial to reducing unfair decisions while preserving the utility of the data. We propose an information-theoretically motivated objective for learning maximally expressive representations subject to fairness constraints. We demonstrate that a range of existing approaches optimize approximations to the Lagrangian dual of our objective. In contrast to these existing approaches, our objective allows the user to control the fairness of the representations by specifying limits on unfairness. Exploiting duality, we introduce a method that optimizes the model parameters as well as the expressiveness-fairness trade-off. Empirical evidence suggests that our proposed method can balance the trade-off between multiple notions of fairness and achieves higher expressiveness at a lower computational cost.

138 citations

Journal ArticleDOI
07 Jul 2020-Nature
TL;DR: Those who could be exploited by AI should be shaping its projects, not the other way around.
Abstract: Those who could be exploited by AI should be shaping its projects. Those who could be exploited by AI should be shaping its projects.

107 citations

Posted Content
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie Chen, Kathleen Creel, Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel1, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Ahmad Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Yang Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang 
TL;DR: The authors provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e. g.g. model architectures, training procedures, data, systems, security, evaluation, theory) to their applications.
Abstract: AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

76 citations

Posted Content
TL;DR: In this article, the authors present a rigorous examination of the values of the field by quantitatively and qualitatively analyzing 100 highly cited ML papers published at premier ML conferences, ICML and NeurIPS.
Abstract: Machine learning (ML) currently exerts an outsized influence on the world, increasingly affecting communities and institutional practices. It is therefore critical that we question vague conceptions of the field as value-neutral or universally beneficial, and investigate what specific values the field is advancing. In this paper, we present a rigorous examination of the values of the field by quantitatively and qualitatively analyzing 100 highly cited ML papers published at premier ML conferences, ICML and NeurIPS. We annotate key features of papers which reveal their values: how they justify their choice of project, which aspects they uplift, their consideration of potential negative consequences, and their institutional affiliations and funding sources. We find that societal needs are typically very loosely connected to the choice of project, if mentioned at all, and that consideration of negative consequences is extremely rare. We identify 67 values that are uplifted in machine learning research, and, of these, we find that papers most frequently justify and assess themselves based on performance, generalization, efficiency, researcher understanding, novelty, and building on previous work. We present extensive textual evidence and analysis of how these values are operationalized. Notably, we find that each of these top values is currently being defined and applied with assumptions and implications generally supporting the centralization of power. Finally, we find increasingly close ties between these highly cited papers and tech companies and elite universities.

40 citations

Posted Content
TL;DR: In this article, an information-theoretically motivated objective for learning maximally expressive representations subject to fairness constraints is proposed, which allows the user to control the fairness of the representations by specifying limits on unfairness.
Abstract: Learning data representations that are transferable and are fair with respect to certain protected attributes is crucial to reducing unfair decisions while preserving the utility of the data. We propose an information-theoretically motivated objective for learning maximally expressive representations subject to fairness constraints. We demonstrate that a range of existing approaches optimize approximations to the Lagrangian dual of our objective. In contrast to these existing approaches, our objective allows the user to control the fairness of the representations by specifying limits on unfairness. Exploiting duality, we introduce a method that optimizes the model parameters as well as the expressiveness-fairness trade-off. Empirical evidence suggests that our proposed method can balance the trade-off between multiple notions of fairness and achieves higher expressiveness at a lower computational cost.

40 citations


Cited by
More filters
Proceedings ArticleDOI
03 Mar 2021
TL;DR: The authors take a step back and ask: How big is too big? What are the possible risks associated with this technology and what paths are available for mitigating those risks? They provide recommendations including weighing the environmental and financial costs first, investing resources into curating and carefully documenting datasets rather than ingesting everything on the web, carrying out pre-development exercises evaluating how the planned approach fits into research and development goals and supports stakeholder values, and encouraging research directions beyond ever larger language models.
Abstract: The past 3 years of work in NLP have been characterized by the development and deployment of ever larger language models, especially for English. BERT, its variants, GPT-2/3, and others, most recently Switch-C, have pushed the boundaries of the possible both through architectural innovations and through sheer size. Using these pretrained models and the methodology of fine-tuning them for specific tasks, researchers have extended the state of the art on a wide array of tasks as measured by leaderboards on specific benchmarks for English. In this paper, we take a step back and ask: How big is too big? What are the possible risks associated with this technology and what paths are available for mitigating those risks? We provide recommendations including weighing the environmental and financial costs first, investing resources into curating and carefully documenting datasets rather than ingesting everything on the web, carrying out pre-development exercises evaluating how the planned approach fits into research and development goals and supports stakeholder values, and encouraging research directions beyond ever larger language models.

1,395 citations

Book ChapterDOI
TL;DR: It is shown how causal Bayesian networks can play an important role to reason about and deal with fairness, especially in complex unfairness scenarios, and how optimal transport theory can be leveraged to develop methods that impose constraints on the full shapes of distributions corresponding to different sensitive attributes.
Abstract: Machine learning based systems are reaching society at large and in many aspects of everyday life. This phenomenon has been accompanied by concerns about the ethical issues that may arise from the adoption of these technologies. ML fairness is a recently established area of machine learning that studies how to ensure that biases in the data and model inaccuracies do not lead to models that treat individuals unfavorably on the basis of characteristics such as e.g. race, gender, disabilities, and sexual or political orientation. In this manuscript, we discuss some of the limitations present in the current reasoning about fairness and in methods that deal with it, and describe some work done by the authors to address them. More specifically, we show how causal Bayesian networks can play an important role to reason about and deal with fairness, especially in complex unfairness scenarios. We describe how optimal transport theory can be leveraged to develop methods that impose constraints on the full shapes of distributions corresponding to different sensitive attributes, overcoming the limitation of most approaches that approximate fairness desiderata by imposing constraints on the lower order moments or other functions of those distributions. We present a unified framework that encompasses methods that can deal with different settings and fairness criteria, and that enjoys strong theoretical guarantees. We introduce an approach to learn fair representations that can generalize to unseen tasks. Finally, we describe a technique that accounts for legal restrictions about the use of sensitive attributes.

328 citations

Journal ArticleDOI
TL;DR: In this paper, a principle-based approach to AI alignment is proposed, which combines normative and technical aspects of the AI alignment problem, creating space for productive engagement between people working in both domains.
Abstract: This paper looks at philosophical questions that arise in the context of AI alignment. It defends three propositions. First, normative and technical aspects of the AI alignment problem are interrelated, creating space for productive engagement between people working in both domains. Second, it is important to be clear about the goal of alignment. There are significant differences between AI that aligns with instructions, intentions, revealed preferences, ideal preferences, interests and values. A principle-based approach to AI alignment, which combines these elements in a systematic way, has considerable advantages in this context. Third, the central challenge for theorists is not to identify ‘true’ moral principles for AI; rather, it is to identify fair principles for alignment that receive reflective endorsement despite widespread variation in people’s moral beliefs. The final part of the paper explores three ways in which fair principles for AI alignment could potentially be identified.

190 citations

Posted Content
TL;DR: This work proposes an algorithm for learning compact representations of datasets that are useful for reconstruction and prediction, but are also flexible fair, meaning they can be easily modified at test time to achieve subgroup demographic parity.
Abstract: We consider the problem of learning representations that achieve group and subgroup fairness with respect to multiple sensitive attributes. Taking inspiration from the disentangled representation learning literature, we propose an algorithm for learning compact representations of datasets that are useful for reconstruction and prediction, but are also \emph{flexibly fair}, meaning they can be easily modified at test time to achieve subgroup demographic parity with respect to multiple sensitive attributes and their conjunctions. We show empirically that the resulting encoder---which does not require the sensitive attributes for inference---enables the adaptation of a single representation to a variety of fair classification tasks with new target labels and subgroup definitions.

171 citations

Journal ArticleDOI
16 Oct 2020
TL;DR: 15 recommendations are intended to increase the reliability, safety, and trustworthiness of HCAI systems: reliable systems based on sound software engineering practices, safety culture through business management strategies, and trustworthy certification by independent oversight.
Abstract: This article attempts to bridge the gap between widely discussed ethical principles of Human-centered AI (HCAI) and practical steps for effective governance. Since HCAI systems are developed and implemented in multiple organizational structures, I propose 15 recommendations at three levels of governance: team, organization, and industry. The recommendations are intended to increase the reliability, safety, and trustworthiness of HCAI systems: (1) reliable systems based on sound software engineering practices, (2) safety culture through business management strategies, and (3) trustworthy certification by independent oversight. Software engineering practices within teams include audit trails to enable analysis of failures, software engineering workflows, verification and validation testing, bias testing to enhance fairness, and explainable user interfaces. The safety culture within organizations comes from management strategies that include leadership commitment to safety, hiring and training oriented to safety, extensive reporting of failures and near misses, internal review boards for problems and future plans, and alignment with industry standard practices. The trustworthiness certification comes from industry-wide efforts that include government interventions and regulation, accounting firms conducting external audits, insurance companies compensating for failures, non-governmental and civil society organizations advancing design principles, and professional organizations and research institutes developing standards, policies, and novel ideas. The larger goal of effective governance is to limit the dangers and increase the benefits of HCAI to individuals, organizations, and society.

166 citations