scispace - formally typeset
Search or ask a question
Author

Praval Khanal

Other affiliations: Katholieke Universiteit Leuven
Bio: Praval Khanal is an academic researcher from Manchester Metropolitan University. The author has contributed to research in topics: Medicine & Sarcopenia. The author has an hindex of 4, co-authored 10 publications receiving 48 citations. Previous affiliations of Praval Khanal include Katholieke Universiteit Leuven.

Papers
More filters
Journal ArticleDOI
TL;DR: The gene variants associated with sarcopenia may help proper counselling and interventions to prevent individuals from developing sarcopenic characteristics, including low muscle mass and muscle strength.
Abstract: The prevalence of sarcopenia depends on the definition used. There are, however, consistent sarcopenic characteristics, including a low muscle mass and muscle strength. Few studies have investigated the relationship between sarcopenia and genotype. A cross-sectional study was conducted with 307 community-dwelling ≥60-year-old women in South Cheshire, UK. Handgrip strength was assessed with a handgrip dynamometer and skeletal muscle mass was estimated using bioelectrical impedance. DNA was extracted from saliva (∼38%) or blood (∼62%) and 24 single-nucleotide polymorphisms (SNPs) were genotyped. Three established sarcopenia definitions - %Skeletal Muscle Mass (%SMM), Skeletal Muscle Mass Index (SMI) and European Working Group on Sarcopenia in Older People (EWGSOP) - were used to assess sarcopenia prevalence. Binary logistic regression with age as covariate was used to identify SNPs associated with sarcopenia. The prevalence of sarcopenia was: %SMM 14.7%, SMI 60.6% and EWGSOP 1.3%. Four SNPs were associated with the %SMM and SMI definitions of sarcopenia; FTO rs9939609, ESR1 rs4870044, NOS3 rs1799983 and TRHR rs7832552. The first three were associated with the %SMM definition, and TRHR rs7832552 with the SMI definition, but none were common to both sarcopenia definitions. The gene variants associated with sarcopenia may help proper counselling and interventions to prevent individuals from developing sarcopenia.

22 citations

Journal ArticleDOI
05 Dec 2020-Genes
TL;DR: In this article, the authors investigated the possible association of 24 SNPs with skeletal muscle phenotypes in 307 elderly Caucasian women (aged 60 −91 years, 66.3 ± 11.3 kg).
Abstract: There is a scarcity of studies that have investigated the role of multiple single nucleotide polymorphisms (SNPs) on a range of muscle phenotypes in an elderly population. The present study investigated the possible association of 24 SNPs with skeletal muscle phenotypes in 307 elderly Caucasian women (aged 60–91 years, 66.3 ± 11.3 kg). Skeletal muscle phenotypes included biceps brachii thickness, vastus lateralis cross-sectional areas, maximal hand grip strength, isometric knee extension and elbow flexion torque. Genotyping for 24 SNPs, chosen on their skeletal muscle structural or functional links, was conducted on DNA extracted from blood or saliva. Of the 24 SNPs, 10 were associated with at least one skeletal muscle phenotype. HIF1A rs11549465 was associated with three skeletal muscle phenotypes and PTK2 rs7460 and ACVR1B rs10783485 were each associated with two phenotypes. PTK2 rs7843014, COL1A1 rs1800012, CNTF rs1800169, NOS3 rs1799983, MSTN rs1805086, TRHR rs7832552 and FTO rs9939609 were each associated with one. Elderly women possessing favourable genotypes were 3.6–13.2% stronger and had 4.6–14.7% larger muscle than those with less favourable genotypes. These associations, together with future work involving a broader range of SNPs, may help identify individuals at particular risk of an age-associated loss of independence.

17 citations

Journal ArticleDOI
TL;DR: The aim of this study was to explore sarcopenia‐related DNA methylation differences in blood samples between age‐matched sarcopenic and non‐sarcopenic older women.
Abstract: Background Sarcopenia is characterized by progressive decreases in muscle mass, muscle strength, and muscle function with ageing. Although many studies have investigated the mechanisms of sarcopenia, its connection with epigenetic factors, such as DNA methylation, still remains poorly understood. The aim of this study was to explore sarcopenia-related DNA methylation differences in blood samples between age-matched sarcopenic and non-sarcopenic older women. Methods A sarcopenic group (n = 24) was identified and selected from a set of 247 older Caucasian women (aged 65–80 years) based on cut-off points of skeletal muscle index at 6.75 kg/m2 and grip strength at 26 kg (the lower quintile of grip strength in the set). A non-sarcopenic group (n = 24) was created with a similar age distribution as that of the sarcopenic group. DNA methylation patterns of whole blood samples from both groups were analysed using Infinium MethylationEPIC BeadChip arrays. Differentially methylated cytosin–phosphate–guanine sites (dmCpGs) were identified at a P value threshold of 0.01 by comparing methylation levels between the sarcopenic and non-sarcopenic groups at each CpG site. dmCpG-related genes were annotated based on Homo sapiens hg19 genome build. The functions of these genes were further examined by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Results The global methylation level of all analysed CpG sites (n = 788 074) showed no significant difference between the sarcopenic and non-sarcopenic groups (0.812), while the average methylation level of dmCpGs (n = 6258) was significantly lower in the sarcopenic group (0.004). The sarcopenic group had significantly higher methylation levels in TSS200 (the region from transcription start site to 200 nucleotides upstream of the site) and lower methylation levels in gene body and 3’UTR regions. In respect of CpG regions, CpG islands in promoters and some intragenic regions showed greater levels of methylation in the sarcopenic group. dmCpG-related Kyoto Encyclopedia of Genes and Genomes pathways were mainly associated with muscle function, actin cytoskeleton regulation, and energy metabolism. Seven genes (HSPB1, PBX4, CNKSR3, ORMDL3, MIR10A, ZNF619, and CRADD) were found with the same methylation direction as previous studies of blood sample methylation during ageing. Fifty-four genes were shared with previous studies of resistance training. Conclusion Our results improve understanding of epigenetic mechanisms of sarcopenia by identifying sarcopenia-related DNA methylation differences in blood samples of older women. These methylation differences suggest underlying alterations of gene expression and pathway function, which can partially explain sarcopenia-related muscular changes.

14 citations

Journal ArticleDOI
TL;DR: In this article, a threshold for one-leg standing balance test (OLST) time for low muscle mass was established, and the ability of that threshold to assess muscular impairments in a poor balance group was tested.
Abstract: Identification of simple screening tools for detecting lower skeletal muscle mass may be beneficial for planning effective interventions in the elderly. We aimed to (1) establish a threshold for one-leg standing balance test (OLST) time for low muscle mass, and (2) test the ability of that threshold to assess muscular impairments in a poor balance group. Eyes-open OLST (maximum duration 30 s) was performed with right and left legs in 291 women (age 71 ± 6 years). OLST time was calculated as the sum of the OLST time of right and left legs. Fat-free mass (FFM), skeletal muscle mass (SMM), fat mass, biceps brachii and vastus lateralis sizes; handgrip strength (HGS), elbow flexion maximum torque (MVCEF) and knee extension maximum torque (MVCKE) were measured. Muscle quality was calculated as MVCKE/FFM and physical activity was assessed by questionnaire. Low muscle mass was defined as SMMrelative of 22.1%, a previously established threshold for pre-sarcopenia. The OLST threshold time to detect low muscle mass was 55 s (sensitivity: 0.63; specificity: 0.60). The poor balance group (OLST < 55 s) had higher fat mass (3.0%, p < 0.001), larger VL thickness (5.1%, p = 0.016), and lower HGS (− 10.2%, p < 0.001), MVCEF (− 8.2%, p = 0.003), MVCKE (− 9.5%, p = 0.012), MVCKE/FFM (− 11.0%, p = 0.004) and physical activity (− 8.0%, p = 0.024) compared to the normal balance group. While after adjusting age, the differences exist for HGS, fat mass and VL thickness only. An OLST threshold of 55 s calculated as the summed score from both legs discriminated pre-sarcopenic characteristics among active, community-dwelling older women with limited potential (sensitivity 0.63, specificity 0.60). OLST, which can be performed easily in community settings without the need for more complex muscle mass measurement, may help identify women at risk of developing sarcopenia.

13 citations

Journal ArticleDOI
TL;DR:
Abstract: Background: Few studies have explored the determinants of health-related quality of life (HRQoL) in the elderly during the COVID-19 pandemic. Identifying these factors may help implement appropriate policies to enhance HRQoL in the elderly. Therefore, we aimed to identify the predictors of physical and mental component summary (PCS and MCS) scores of HRQoL in selected six low- and middle-income Asian countries. Methods: We conducted an online survey of older people aged ≥55 years in six countries: Bangladesh, Iran, Iraq, Malaysia, Palestine, and Sri Lanka. The Stark QoL questionnaire was used to measure the PCS and MCS scores. Univariate and multiple variable analyses after adjusting for confounders were performed to identify the possible predictors of PCS and MCS. Results: A total of 1644 older people (69.1 ± 7.8 years, range 55–97 years, Female: 50.9%) responded to the survey. We documented age, country of residence, marital status, number of male children, current employment status, and health insurance, ability to pay household bills, frequency of family members visits and receiving support during COVID-19 pandemic predicted both PCS and MCS. However, gender, residence, and number of female children were associated with PCS only (all p < 0.05). Conclusion: Socio-demographic factors such as age, country of residence, marital status, number of male children, current employment status, health insurance, ability to pay household bills, frequency of family members visiting family members, and receiving support during the COVID-19 pandemic affecting both physical and mental quality of life. These results can guide formulating health care planning policies to enhance QoL during COVID-19 and future pandemics in the elderly.

11 citations


Cited by
More filters
01 Jan 2000
TL;DR: In this paper, it was shown that myostatin up-regulated p21Waf1, Cip1, and decreased the levels and activity of Cdk2 protein in myoblasts.
Abstract: Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, has been shown to be a negative regulator of myogenesis. Here we show that myostatin functions by controlling the proliferation of muscle precursor cells. When C2C12 myoblasts were incubated with myostatin, proliferation of myoblasts decreased with increasing levels of myostatin. Fluorescence-activated cell sorting analysis revealed that myostatin prevented the progression of myoblasts from the G1- to S-phase of the cell cycle. Western analysis indicated that myostatin specifically up-regulated p21Waf1, Cip1, a cyclin-dependent kinase inhibitor, and decreased the levels and activity of Cdk2 protein in myoblasts. Furthermore, we also observed that in myoblasts treated with myostatin protein, Rb was predominately present in the hypophosphorylated form. These results suggests that, in response to myostatin signaling, there is an increase in p21 expression and a decrease in Cdk2 protein and activity thus resulting in an accumulation of hypophosphorylated Rb protein. This, in turn, leads to the arrest of myoblasts in G1-phase of cell cycle. Thus, we propose that the generalized muscular hyperplasia phenotype observed in animals that lack functional myostatin could be as a result of deregulated myoblast proliferation.

875 citations

Journal Article
TL;DR: It is concluded that the prevalence of sarcopenia is highly dependent on the applied diagnostic criteria and it is necessary to reach a consensus on the definition of sarc Openia in order to make studies comparable and for implementation in clinical care.
Abstract: Sarcopenia, low muscle mass, is an increasing problem in our ageing society. The prevalence of sarcopenia varies extremely between elderly cohorts ranging from 7% to over 50%. Without consensus on the definition of sarcopenia, a variety of diagnostic criteria are being used. We assessed the degree of agreement between seven different diagnostic criteria for sarcopenia based on muscle mass and handgrip strength, described in literature. In this cross-sectional study, we included men (n = 325) and women (n = 329) with complete measurements of handgrip strength and body composition values as measured by bioimpedance analysis within the Leiden Longevity Study. Prevalence of sarcopenia was stratified by gender and age. In men (mean age 64.5 years), the prevalence of sarcopenia with the different diagnostic criteria ranged from 0% to 20.8% in the lowest age category (below 60 years), from 0% to 31.2% in the middle (60 to 69 years) and from 0% to 45.2% in the highest age category (above 70 years). In women (mean age 61.8 years), the prevalence of sarcopenia ranged from 0% to 15.6%, 0% to 21.8% and 0% to 25.8% in the lowest, middle and highest age category, respectively. Only one participant (0.2%) was identified having sarcopenia according to all diagnostic criteria that marked prevalence above 0%. We conclude that the prevalence of sarcopenia is highly dependent on the applied diagnostic criteria. It is necessary to reach a consensus on the definition of sarcopenia in order to make studies comparable and for implementation in clinical care.

179 citations

Journal ArticleDOI
TL;DR: This review describes sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarizes the current view on molecular causes of sarcopenian development as well as open questions provoking further research efforts.

124 citations

01 Jan 2017
TL;DR: Kiel et al. as discussed by the authors performed a meta-analysis of genome-wide association studies for whole body lean body mass and found five novel genetic loci to be significantly associated with lean body weight.
Abstract: Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10−8) or suggestively genome wide (p < 2.3 × 10−6). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

82 citations

Journal ArticleDOI
TL;DR: This review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Abstract: Age‐associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra‐abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β‐oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro‐inflammatory cytokines. In turn, these muscle‐secreted cytokines may exacerbate adipose tissue atrophy, support chronic low‐grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full‐blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the ‘obesity paradox’, could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full‐blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.

74 citations