scispace - formally typeset
Search or ask a question
Author

Praveen Gauravaram

Bio: Praveen Gauravaram is an academic researcher from Tata Consultancy Services. The author has contributed to research in topics: Hash function & Cryptographic hash function. The author has an hindex of 15, co-authored 66 publications receiving 2252 citations. Previous affiliations of Praveen Gauravaram include Queensland University of Technology & Technical University of Denmark.


Papers
More filters
Proceedings ArticleDOI
13 Mar 2017
TL;DR: This paper shows that the proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability, and presents simulation results to highlight that the overheads are insignificant relative to its security and privacy gains.
Abstract: Internet of Things (IoT) security and privacy remain a major challenge, mainly due to the massive scale and distributed nature of IoT networks. Blockchain-based approaches provide decentralized security and privacy, yet they involve significant energy, delay, and computational overhead that is not suitable for most resource-constrained IoT devices. In our previous work, we presented a lightweight instantiation of a BC particularly geared for use in IoT by eliminating the Proof of Work (POW) and the concept of coins. Our approach was exemplified in a smart home setting and consists of three main tiers namely: cloud storage, overlay, and smart home. In this paper we delve deeper and outline the various core components and functions of the smart home tier. Each smart home is equipped with an always online, high resource device, known as “miner” that is responsible for handling all communication within and external to the home. The miner also preserves a private and secure BC, used for controlling and auditing communications. We show that our proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability. Finally, we present simulation results to highlight that the overheads (in terms of traffic, processing time and energy consumption) introduced by our approach are insignificant relative to its security and privacy gains.

1,340 citations

Journal ArticleDOI
TL;DR: A Lightweight Scalable blockchain (LSB) is proposed that is optimized for IoT requirements while also providing end-to-end security and Qualitative arguments demonstrate that the approach is resilient to several security attacks.

373 citations

Journal Article
TL;DR: Grostl is a SHA-3 candidate proposal, an iterated hash function with a compression function built from two fixed, large, distinct permutations, which has the effect that all known, generic attacks on the hash function are made much more difficult.
Abstract: Grostl is a SHA-3 candidate proposal. Grostl is an iterated hash function with a compression function built from two fixed, large, distinct permutations. The design of Grostl is transparent and based on principles very different from those used in the SHA-family. The two permutations are constructed using the wide trail design strategy, which makes it possible to give strong statements about the resistance of Grostl against large classes of cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof for the security of the hash function. Grostl is a byte-oriented SP-network which borrows components from the AES. The S-box used is identical to the one used in the block cipher AES and the diffusion layers are constructed in a similar manner to those of the AES. As a consequence there is a very strong confusion and diffusion in Grostl. Grostl is a so-called wide-pipe construction where the size of the internal state is significantly larger than the size of the output. This has the effect that all known, generic attacks on the hash function are made much more difficult. Grostl has good performance on a wide range of platforms and counter-measures against side-channel attacks are well-understood from similar work on the AES.

246 citations

Proceedings Article
01 Jan 2009
TL;DR: Grostl as mentioned in this paper is a SHA-3 candidate with a compression function built from two fixed, large, distinct permutations, which are used to give strong statements about the resistance of Grostl against large classes of cryptanalytic attacks.
Abstract: Grostl is a SHA-3 candidate proposal. Grostl is an iterated hash function with a compression function built from two �fixed, large, distinct permutations. The design of Grostl is transparent and based on principles very different from those used in the SHA-family. The two permutations are constructed using the wide trail design strategy, which makes it possible to give strong statements about the resistance of Grostl against large classes of cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof for the security of the hash function. Grostl is a byte-oriented SP-network which borrows components from the AES. The S-box used is identical to the one used in the block cipher AES and the diffusion layers are constructed in a similar manner to those of the AES. As a consequence there is a very strong confusion and diffusion in Grostl

184 citations

Book ChapterDOI
21 Jul 2014
TL;DR: This work presents several linear characteristics for reduced-round SIMON32/64 that can be used for a key-recovery attack and extend them further to attack other variants of SIMON, and exploits a connection between linear and differential characteristics for SIMON to constructlinear characteristics for different variants of reduced- round SIMON.
Abstract: SIMON is a family of 10 lightweight block ciphers published by Beaulieu et al. from the United States National Security Agency (NSA). A cipher in this family with \(K\)-bit key and \(N\)-bit block is called SIMON\({N}/{K}\). We present several linear characteristics for reduced-round SIMON32/64 that can be used for a key-recovery attack and extend them further to attack other variants of SIMON. Moreover, we provide results of key recovery analysis using several impossible differential characteristics starting from 14 out of 32 rounds for SIMON32/64 to 22 out of 72 rounds for SIMON128/256. In some cases the presented observations do not directly yield an attack, but provide a basis for further analysis for the specific SIMON variant. Finally, we exploit a connection between linear and differential characteristics for SIMON to construct linear characteristics for different variants of reduced-round SIMON. Our attacks extend to all variants of SIMON covering more rounds compared to any known results using linear cryptanalysis. We present a key recovery attack against SIMON128/256 which covers 35 out of 72 rounds with data complexity \(2^{123}\). We have implemented our attacks for small scale variants of SIMON and our experiments confirm the theoretical bias presented in this work.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive classification of blockchain-enabled applications across diverse sectors such as supply chain, business, healthcare, IoT, privacy, and data management is presented, and key themes, trends and emerging areas for research are established.

1,310 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors conduct a systematic study on the security threats to blockchain and survey the corresponding real attacks by examining popular blockchain systems. And they also review the security enhancement solutions for blockchain, which could be used in the development of various blockchain systems, and suggest some future directions to stir research efforts into this area.

1,071 citations

Journal ArticleDOI
TL;DR: This paper provides a systematic vision of the organization of the blockchain networks, a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication, and discusses several open issues in the protocol design for blockchain consensus.
Abstract: The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions.

680 citations

Journal ArticleDOI
TL;DR: An in-depth survey of BCoT is presented and the insights of this new paradigm are discussed and the open research directions in this promising area are outlined.
Abstract: Internet of Things (IoT) is reshaping the incumbent industry to smart industry featured with data-driven decision-making. However, intrinsic features of IoT result in a number of challenges, such as decentralization, poor interoperability, privacy, and security vulnerabilities. Blockchain technology brings the opportunities in addressing the challenges of IoT. In this paper, we investigate the integration of blockchain technology with IoT. We name such synthesis of blockchain and IoT as blockchain of things (BCoT). This paper presents an in-depth survey of BCoT and discusses the insights of this new paradigm. In particular, we first briefly introduce IoT and discuss the challenges of IoT. Then, we give an overview of blockchain technology. We next concentrate on introducing the convergence of blockchain and IoT and presenting the proposal of BCoT architecture. We further discuss the issues about using blockchain for fifth generation beyond in IoT as well as industrial applications of BCoT. Finally, we outline the open research directions in this promising area.

654 citations