scispace - formally typeset
Search or ask a question
Author

Praveen K. Thallapally

Bio: Praveen K. Thallapally is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Adsorption & Metal-organic framework. The author has an hindex of 64, co-authored 190 publications receiving 12110 citations. Previous affiliations of Praveen K. Thallapally include Battelle Memorial Institute & University of Duisburg-Essen.


Papers
More filters
Journal ArticleDOI
TL;DR: Two main challenges of using MOFs in CO(2) capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges.
Abstract: Metal–organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents The recent progress in adsorption-based CO2 capture by MOFs is reviewed and summarized in this critical review CO2 adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures Keys to CO2 adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively Many MOFs have high CO2 selectivities over N2 and CH4 Water effects on CO2 adsorption in MOFs are presented and compared with benchmark zeolites In addition, strategies appeared in the literature to enhance CO2 adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement Besides the advantages, two main challenges of using MOFs in CO2 capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path forward have been proposed to address the two challenges as well (150 references)

1,150 citations

Journal ArticleDOI
TL;DR: It is shown that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon, and selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.
Abstract: The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

474 citations

Journal ArticleDOI
TL;DR: A high-throughput computational screening of large databases of metal–organic frameworks is carried out and it is affirm that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.
Abstract: Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

428 citations

Journal ArticleDOI
TL;DR: These materials show potential for gas separation technology, display remarkable water transport through hydrophobic crystals, and clearly show that molecules within crystals are capable of cooperating with guests as they move through non-porous environments.
Abstract: Seemingly non-porous organic solids have the ability for guest transport and have also been shown to absorb gases, including hydrogen, methane and acetylene, to varied extents. These materials also show potential for gas separation technology, display remarkable water transport through hydrophobic crystals, and clearly show that molecules within crystals are capable of cooperating with guests as they move through non-porous environments. This work is presented within a broader topic which also encompasses crystal engineering and (microporous) metal-organic frameworks (MOF's).

411 citations

Journal ArticleDOI
TL;DR: A breathing 2-fold interpenetrated microporous metal-organic framework was synthesized with a flexible tetrahedral organic linker and Zn( 2) clusters that sorb CO(2) preferably over N (2) and H(2).
Abstract: A breathing 2-fold interpenetrated microporous metal-organic framework was synthesized with a flexible tetrahedral organic linker and Zn(2) clusters that sorb CO(2) preferably over N(2) and H(2).

411 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract: Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

7,186 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: The most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.
Abstract: The escalating level of atmospheric carbon dioxide is one of the most pressing environmental concerns of our age. Carbon capture and storage (CCS) from large point sources such as power plants is one option for reducing anthropogenic CO(2) emissions; however, currently the capture alone will increase the energy requirements of a plant by 25-40%. This Review highlights the challenges for capture technologies which have the greatest likelihood of reducing CO(2) emissions to the atmosphere, namely postcombustion (predominantly CO(2)/N(2) separation), precombustion (CO(2)/H(2)) capture, and natural gas sweetening (CO(2)/CH(4)). The key factor which underlies significant advancements lies in improved materials that perform the separations. In this regard, the most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.

3,388 citations