scispace - formally typeset
Search or ask a question
Author

Preben Mogensen

Other affiliations: Nokia, Bell Labs, Aalto University  ...read more
Bio: Preben Mogensen is an academic researcher from Aalborg University. The author has contributed to research in topics: Telecommunications link & Scheduling (computing). The author has an hindex of 64, co-authored 512 publications receiving 16042 citations. Previous affiliations of Preben Mogensen include Nokia & Bell Labs.


Papers
More filters
Posted Content
02 Oct 2020
TL;DR: A recently conducted measurement campaign for the A2G channels is introduced, and comprehensive spatial channel characteristics were investigated in the composite and cluster levels at different heights in the three scenarios.
Abstract: Cellular-connected unmanned aerial vehicles (UAVs) have recently attracted a surge of interests in both academia and industry. Understanding the air-to-ground (A2G) propagation channels is essential to enable reliable and/or high-throughput communications for UAVs and protect the ground user equipments (UEs). In this contribution, a recently conducted measurement campaign for the A2G channels is introduced. A uniform circular array (UCA) with 16 antenna elements was employed to collect the downlink signals of two different Long Term Evolution (LTE) networks, at the heights of 0-40m in three different, namely rural, urban and industrial scenarios. The channel impulse responses (CIRs) have been extracted from the received data, and the spatial/angular parameters of the multipath components in individual channels were estimated according to a high-resolution-parameter estimation (HRPE) principle. Based on the HRPE results, clusters of multipath components were further identified. Finally, comprehensive spatial channel characteristics were investigated in the composite and cluster levels at different heights in the three scenarios.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide a mobility performance analysis through extensive system-level simulations of state-of-the-art HO procedures for 5G NR over LEO satellite networks with Earth-moving cells.
Abstract: Low-Earth orbit (LEO) satellite networks are meant to be fundamental to closing the digital divide, enabling new market opportunities and providing fifth-generation (5G) New Radio (NR) connectivity everywhere at any time. Despite the advantages of LEO deployments, these systems are characterized by a high mobility and a challenging propagation channel that compromise several procedures of the current 5G standards. One of the impacted areas is the radio mobility management, which is used to ensure continuous and satisfactory service while users handover among cells. Current research shows that the measurement-based 5G NR handover (HO) procedures, designed for terrestrial networks, fail to ensure optimal mobility performance. In this work, we provide a mobility performance analysis through extensive system-level simulations of state-of-the-art HO procedures for 5G NR over LEO satellite networks with Earth-moving cells. Furthermore, this article presents a novel antenna gain-based HO solution for intra-satellite mobility that exploits the predictability of the satellites movement and the antenna gain of the satellite beams, making user equipment (UE)’s radio measurements obsolete. The system-level simulation results, which consider users in rural and urban scenarios, show that by exploiting the known satellite’s trajectory, the UE eliminates service failures and undesired HO events, maximises the time-of-stay in a cell and experiences improved downlink signal-to-interference-plus-noise ratio. This article also includes a sensitivity study of the impact on the mobility performance of satellite-specific and UE-specific errors such as the UE’s location error, the satellite beam’s antenna radiation error and the satellite’s pointing error. Finally, the impact of the UE’s mobility is analyzed.

1 citations

Journal ArticleDOI
TL;DR: It is shown that the MMSE receiver’s spatial interference suppression gain heavily depends on the amount of experienced DIR, and the logarithmic relation between SINR and capacity hinders translation of the full SinR gain into HSDPA sector throughput.
Abstract: Link level SINR simulation results and network level sector throughput simulation results that quantify the benefit of dual antenna MMSE reception in a macrocellular WCDMA/HSDPA system are provided. Dual antenna RAKE receiver performance serves as baseline reference. Link-level simulation results are accompanied by a novel analytical expression that in flat Rayleigh fading and for uncorrelated rx-antenna branches describes spatial interference suppression mean SINR gain as function of a dominant other-sector interference ratio (DIR). It is shown that the MMSE receiver's spatial interference suppression gain heavily depends on the amount of experienced DIR. The higher the DIR the higher the SINR gain. Nevertheless, seen on network level the SINR gain turns into moderate sector throughput gain, well below 50%. This is due to the fact that high DIR situations are rare in the investigated macrocellular scenario. Moreover, the logarithmic relation between SINR and capacity hinders translation of the full SINR gain into HSDPA sector throughput.

1 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations

01 Jan 2000
TL;DR: This article briefly reviews the basic concepts about cognitive radio CR, and the need for software-defined radios is underlined and the most important notions used for such.
Abstract: An Integrated Agent Architecture for Software Defined Radio. Rapid-prototype cognitive radio, CR1, was developed to apply these.The modern software defined radio has been called the heart of a cognitive radio. Cognitive radio: an integrated agent architecture for software defined radio. Http:bwrc.eecs.berkeley.eduResearchMCMACR White paper final1.pdf. The cognitive radio, built on a software-defined radio, assumes. Radio: An Integrated Agent Architecture for Software Defined Radio, Ph.D. The need for software-defined radios is underlined and the most important notions used for such. Mitola III, Cognitive radio: an integrated agent architecture for software defined radio, Ph.D. This results in the set-theoretic ontology of radio knowledge defined in the. Cognitive Radio An Integrated Agent Architecture for Software.This article first briefly reviews the basic concepts about cognitive radio CR. Cognitive Radio-An Integrated Agent Architecture for Software Defined Radio. Cognitive Radio RHMZ 2007. Software-defined radio SDR idea 1. Cognitive radio: An integrated agent architecture for software.Cognitive Radio SOFTWARE DEFINED RADIO, AND ADAPTIVE WIRELESS SYSTEMS2 Cognitive Networks. 3 Joseph Mitola III, Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio Stockholm.

3,814 citations