scispace - formally typeset
Search or ask a question
Author

Premamoy Ghosh

Bio: Premamoy Ghosh is an academic researcher from University of Calcutta. The author has contributed to research in topics: Methyl methacrylate & Polymerization. The author has an hindex of 20, co-authored 98 publications receiving 1577 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of incorporation of different extents of extra conducting carbon black as filler on some selected physical and mechanical properties, aging behavior and DC electrical conducting character of vulcanizates of EPDM-based compounds have been studied.

186 citations

Journal ArticleDOI
TL;DR: In this paper, the PANI-PVP composites were characterized microscopically, by transmission electron microscopy (TEM), for the prepared dispersion or solution of PANI in the presence of PVP, and by scanning electron microscope (SEM) for selected isolated PANI composites.

155 citations

Journal ArticleDOI
TL;DR: In this article, three-ply composite laminates prepared from E-glass or N-glass chopped strand mat (CSMs) and jute (J) fabrics as reinforcing agents and amine-cured epoxy resin as the matrix material were subjected to dynamic mechanical thermal analysis at a fixed frequency of 1 Hz over a temperature range of 30-180°C.
Abstract: Three-ply composite laminates prepared from E-glass or N-glass chopped strand mats (CSMs) and jute (J) fabrics as reinforcing agents and amine-cured epoxy resin as the matrix material were subjected to dynamic mechanical thermal analysis at a fixed frequency of 1 Hz over a temperature range of 30–180°C. The volume fraction of fibers ranged between 0.21 and 0.25. The reinforcing effect for the three fibers is in the order E-glass > N-glass ≫ jute. Glass-reinforced composites show a higher storage modulus (E′) than that of jute-reinforced composites. The E′ values of glass-jute hybrid composites lie between those of glass-reinforced and jute-reinforced composites. Odd trends in temperature variability of the loss modulus (E′) and the damping parameter, tan δ, and in the glass transition temperature (Tg) for the three different unitary and four different hybrid composites are interpreted and understood on the basis of odd differences in (1) the chemical nature and physical properties of the three different fibers (E-glass, N-glass, and jute), (2) the void content and distribution, (3) the thermal expansion coefficients of the main phases in the composites, (4) the degree of matrix stiffening at or near the fiber-matrix interface, and (5) the extents of matrix softening in the zone next to the interface. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2467–2472, 1997

80 citations

Journal ArticleDOI
01 Jan 1998-Polymer
TL;DR: In this article, the graft copolymerization of low density polyethylene (PE) with acrylic acid (AA), ethyl acrylate (EA), and butyl Acrylate(BA) using dicumyl peroxide (DCP) as the initiator was studied using differential scanning calorimetry (DSC) under the dynamic (nonisothermal) condition and in the shear mixer of a Brabender plastic order at 170°C (443°K).

72 citations

Journal ArticleDOI
TL;DR: In this article, a PANI-PAAm composites were characterized spectroscopically (UV-Vis and FTIR), thermally (TGA, DSC) and with respect to their electrical conductivity at different PANI loadings and temperatures.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites is presented, and the influence of such treatments by taking into account fibre content on the creep, quasi-static, cyclic dynamic and impact behaviour of natural fibre reinforced plastics are discussed in detail.

4,160 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review on the physical and chemical treatment methods that improve the fiber-matrix adhesion and their characterization methods is given, as well as a detailed characterization of these methods.
Abstract: An Important aspect with respect to optimal mechanical performance of fiber reinforced composites in general and durability in particular is the optimization of the interfacial bond between fiber and polymer matrix. The quality of the fiber-matrix interface is significant for the application of natural fibers as reinforcement for plastics. Since the fibers and matrices are chemically different, strong adhesion at their interfaces is needed for an effective transfer of stress and bond distribution throughout an Interface. A good compatibilization between cellulose fibers and non-polar matrices is achieved from polymeric chains that will favor entanglements and interdiffiusion with the matrix. This article gives a critical review on the physical and chemical treatment methods that improve the fiber-matrix adhesion and their characterization methods.

1,071 citations

Journal ArticleDOI
TL;DR: Graft co-polymerization initiated by chemical treatment, photo-irradiation, high-energy radiation technique, etc. is documented in this article, where several prime controlling factors on grafting are discussed.

1,027 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials can be found in this paper.
Abstract: The extensive development of electronic systems and telecommunications has lead to major concerns regarding electromagnetic pollution. Motivated by environmental questions and by a wide variety of applications, the quest for materials with high efficiency to mitigate electromagnetic interferences (EMI) pollution has become a mainstream field of research. This paper reviews the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials. After a brief introduction, in Section 1, the electromagnetic theory will be briefly discussed in Section 2 setting the foundations of the strategies to be employed to design efficient EMI shielding materials. These materials will be classified in the next section by the type of carbon fillers, involving carbon black, carbon fiber, carbon nanotubes and graphene. The importance of the dispersion method into the polymer matrix (melt-blending, solution processing, etc.) on the final material properties will be discussed. The combination of carbon fillers with other constituents such as metallic nanoparticles or conductive polymers will be the topic of Section 4. The final section will address advanced complex architectures that are currently studied to improve the performances of EMI materials and, in some cases, to impart additional properties such as thermal management and mechanical resistance. In all these studies, we will discuss the efficiency of the composites/devices to absorb and/or reflect the EMI radiation.

949 citations