scispace - formally typeset
Search or ask a question
Author

Priscila Lupino Gratão

Bio: Priscila Lupino Gratão is an academic researcher from Sao Paulo State University. The author has contributed to research in topics: Glutathione reductase & Catalase. The author has an hindex of 31, co-authored 80 publications receiving 3885 citations. Previous affiliations of Priscila Lupino Gratão include University of São Paulo & Escola Superior de Agricultura Luiz de Queiroz.


Papers
More filters
Journal ArticleDOI
TL;DR: This review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Abstract: The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

1,065 citations

Journal ArticleDOI
TL;DR: In this paper, the use of naturally occurring metal tolerant plants and the application of genetic manipulation, should hasten the process of transferring this technology from laboratory to field, and it is essential to investigate and understand how plants are able to tolerate toxic metals and to identify which metabolic pathways and genes are involved in such a process.
Abstract: The contamination of the environment by toxic metals poses a threat for "Man and biosphere", reducing agricultural productivity and damaging the health of the ecosystem. In developed nations, this problem is being addressed and solved to some extent by using "green technology" involving metal tolerant plants, to clean up the polluted soils. The use of naturally occurring metal tolerant plants and the application of genetic manipulation, should hasten the process of transferring this technology from laboratory to field. Therefore, it is essential to investigate and understand how plants are able to tolerate toxic metals and to identify which metabolic pathways and genes are involved in such a process. Recent advances in knowledge derived from the "omics", have considerable potential in developing this green technology. However, strategies to produce genetically altered plants to remove, destroy or sequester toxic metals from the environment and the long-term implications, must be investigated carefully.

203 citations

Journal ArticleDOI
TL;DR: The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv.
Abstract: The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro-Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl 2 , respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl 2 , whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl 2 . Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl 2 after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl 2 , but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl 2 when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl 2 , whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl 2 . The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl 2 . However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl 2 from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.

187 citations

Journal ArticleDOI
TL;DR: The results suggest that the higher concentrations of CdCl(2) may lead to oxidative stress, which may also be related to the inhibition of APX activity probably due to glutathione and ascorbate depletion.

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery are described, which protects plants against oxidative stress damages.

8,259 citations

Journal ArticleDOI
TL;DR: This review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Abstract: The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

1,065 citations

Journal ArticleDOI
TL;DR: This review has documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Abstract: Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.

1,028 citations

Journal ArticleDOI
TL;DR: This article reviews current knowledge of uptake, transport and accumulation of Cd in plants and gives an overview of C d-detoxification mechanisms, Cd-induced oxidative damage and antioxidant defenses in plants, and presents a picture of the role of reactive oxygen and nitrogen species in Cd toxicity.

934 citations

Journal ArticleDOI
TL;DR: The diversity and ecology of metal resistant SPB are highlighted and their potential role in phytoremediation of heavy metals is discussed and an increase in plant growth and metal uptake will further enhance the effectiveness of phytOREmediation processes.

923 citations