scispace - formally typeset
Search or ask a question
Author

Priyanka Verma

Other affiliations: Rockefeller University
Bio: Priyanka Verma is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: DNA repair & Homologous recombination. The author has an hindex of 13, co-authored 18 publications receiving 992 citations. Previous affiliations of Priyanka Verma include Rockefeller University.

Papers
More filters
Journal ArticleDOI
03 Nov 2016-Nature
TL;DR: The inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomeres maintenance, which underlies ALT telitere maintenance.
Abstract: Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.

315 citations

Journal ArticleDOI
TL;DR: It is found that Mtb induces the foamy phenotype via targeted manipulation of host cellular metabolism to divert the glycolytic pathway toward ketone body synthesis, and pharmacological targeting of pathways mediating this host-pathogen metabolic crosstalk provides a potential strategy for developing tuberculosis chemotherapy.

228 citations

Journal ArticleDOI
TL;DR: The authors show that the combination of PARP and ATR inhibitors increases the therapeutic response in PAR Pi and platinum resistant ovarium cancer PDX models, indicating that PARPi-ATRi is a highly promising strategy for OVCAs that acquire resistance to PARPi and platinum.
Abstract: Ovarian cancer (OVCA) inevitably acquires resistance to platinum chemotherapy and PARP inhibitors (PARPi). We show that acquisition of PARPi-resistance is accompanied by increased ATR-CHK1 activity and sensitivity to ATR inhibition (ATRi). However, PARPi-resistant cells are remarkably more sensitive to ATRi when combined with PARPi (PARPi-ATRi). Sensitivity to PARPi-ATRi in diverse PARPi and platinum-resistant models, including BRCA1/2 reversion and CCNE1-amplified models, correlate with synergistic increases in replication fork stalling, double-strand breaks, and apoptosis. Surprisingly, BRCA reversion mutations and an ability to form RAD51 foci are frequently not observed in models of acquired PARPi-resistance, suggesting the existence of alternative resistance mechanisms. However, regardless of the mechanisms of resistance, complete and durable therapeutic responses to PARPi-ATRi that significantly increase survival are observed in clinically relevant platinum and acquired PARPi-resistant patient-derived xenografts (PDXs) models. These findings indicate that PARPi-ATRi is a highly promising strategy for OVCAs that acquire resistance to PARPi and platinum.

136 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an insertion motif dictates formation of acyl-adenylate in FAALs, which are crucial nodes in biosynthetic network of virulent lipids and inhibitors directed against these proteins provide a unique multi-pronged approach of simultaneously disrupting several pathways.
Abstract: The recent discovery of fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis (Mtb) provided a new perspective to fatty acid activation dogma. These proteins convert fatty acids to corresponding adenylates, which is an intermediate of acyl-CoA-synthesizing fatty acyl-CoA ligases (FACLs). Presently, it is not evident how obligate pathogens like Mtb have evolved such new themes of functional versatility and whether the activation of fatty acids to acyl-adenylates could indeed be a general mechanism. Here, based on elucidation of the first structure of a FAAL protein and by generating loss- as well as gain-of-function mutants that interconvert FAAL and FACL activities, we demonstrate that an insertion motif dictates formation of acyl-adenylate. Since FAALs in Mtb are crucial nodes in biosynthetic network of virulent lipids, inhibitors directed against these proteins provide a unique multi-pronged approach of simultaneously disrupting several pathways.

126 citations

Journal ArticleDOI
TL;DR: How alternative HDR pathways in both prokaryotes and eukaryotes in different contexts are executed is reviewed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis.
Abstract: DNA repair is essential to maintain genomic integrity and initiate genetic diversity. While gene conversion and classical nonhomologous end-joining are the most physiologically predominant forms of DNA repair mechanisms, emerging lines of evidence suggest the usage of several noncanonical homology-directed repair (HDR) pathways in both prokaryotes and eukaryotes in different contexts. Here we review how these alternative HDR pathways are executed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis.

116 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances of the three major genome editing technologies are reviewed and the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies are discussed, focusing on eukaryotic cells and animal models.
Abstract: Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)–Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.

858 citations

Journal ArticleDOI
TL;DR: This Review considers DSB repair-pathway choice in somatic mammalian cells as a series of ‘decision trees’, and explores how defective pathway choice can lead to genomic instability.
Abstract: The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.

713 citations

Journal ArticleDOI
TL;DR: Gaining more insights and knowledge into this complex network of host‐pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi‐resistance of M. tuberculosis against conventional antibiotics.
Abstract: Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

663 citations

Journal ArticleDOI
TL;DR: The roles of gut microbial SCFAs in the host energy regulation are summarized and an overview of the current understanding of its physiological functions is presented.
Abstract: During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions.

606 citations

Journal ArticleDOI
TL;DR: How DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity is reviewed.
Abstract: The correct duplication and transmission of genetic material to daughter cells is the primary objective of the cell division cycle. DNA replication and chromosome segregation present both challenges and opportunities for DNA repair pathways that safeguard genetic information. As a consequence, there is a profound, two-way connection between DNA repair and cell cycle control. Here, we review how DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity.

524 citations