scispace - formally typeset
Search or ask a question
Author

Przemek Mróz

Bio: Przemek Mróz is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Gravitational microlensing & Light curve. The author has an hindex of 29, co-authored 221 publications receiving 3060 citations. Previous affiliations of Przemek Mróz include Ohio State University & Max Planck Society.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
24 Jul 2017-Nature
TL;DR: A sample of microlensing events six times larger than that of ref. 11 is analysed, finding no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star.
Abstract: In an analysis of a large sample of microlensing events, a few suggest the existence of Earth-mass free-floating planets, but only the expected number of Jupiter-mass free-floating objects were detected. Theories of planet formation predict that there should be a population of free-floating planets with masses ranging from less than to several times the mass of Earth. However, the theories do not predict a substantial population of unbound Jupiter-mass planets, the existence of which was surprisingly inferred from the results of a previous analysis of microlensing events. Przemek Mroz et al. have now analysed a much larger sample of microlensing events and place an upper limit, at two standard deviations, on the population of free-floating Jupiter-mass planets that is almost a factor of ten lower than the previous claim, thereby essentially ruling out the existence of this particular population. They do, however, see a few very short events, which, on the basis of the theories of planet formation, indicate the existence of free-floating Earth-mass planets. Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes1,2,3. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form4. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions5,6 as well as wide-field surveys7, but these studies are incomplete8,9,10 for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis11 of 474 microlensing events found an excess of ten very short events (1–2 days)—more than known stellar populations would suggest—indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories3,12 and surveys of young clusters8,9,10. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010–15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1–2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories3,12.

256 citations

Journal ArticleDOI
02 Aug 2019-Science
TL;DR: In this paper, the authors constructed a 3D map of the Milky Way in three dimensions, based on the positions and distances of thousands of classical Cepheids variable stars.
Abstract: The Milky Way is a barred spiral galaxy, with physical properties inferred from various tracers informed by the extrapolation of structures seen in other galaxies. However, the distances of these tracers are measured indirectly and are model-dependent. We constructed a map of the Milky Way in three dimensions, based on the positions and distances of thousands of classical Cepheid variable stars. This map shows the structure of our Galaxy's young stellar population and allows us to constrain the warped shape of the Milky Way's disk. A simple model of star formation in the spiral arms reproduces the observed distribution of Cepheids.

105 citations

Journal ArticleDOI
TL;DR: In this paper, the first space-based microlens parallax measurement of an isolated star is presented, based on the striking differences in the lightcurve as seen from Earth and from Spitzer (~ 1 AU to the west).
Abstract: We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~ 1 AU to the west), we infer a projected velocity v_(hel) ~ 250kms^(-1), which strongly favors a lens in the Galactic Disk with mass M = 0.23 ± 0.07 M_☉ and distance D_L =3.1 ± 0.4 kpc. An ensemble of such measurements drawn from our ongoing program could be used to measure the single-lens mass function including dark objects, and also is necessary for measuring the Galactic distribution of planets since the ensemble reflects the underlying Galactic distribution of microlenses. We study the application of the many ideas to break the four-fold degeneracy first predicted by Refsdal 50 years ago. We find that this degeneracy is clearly broken, but by two unanticipated mechanisms: a weak constraint on the orbital parallax from the ground-based data and a definitive measurement of the source proper motion.

90 citations

Journal ArticleDOI
Calen B. Henderson1, Radosław Poleski2, Radosław Poleski3, Matthew T. Penny3, Rachel Street4, David P. Bennett5, David W. Hogg6, B. Scott Gaudi3, Wei Zhu3, Thomas Barclay7, Geert Barentsen7, Steve B. Howell7, Fergal Mullally7, Andrzej Udalski2, Michał K. Szymański2, Jan Skowron2, Przemek Mróz2, S. Kozłowski2, Łukasz Wyrzykowski2, Paweł Pietrukowicz2, Igor Soszyński2, Krzysztof Ulaczyk2, M. Pawlak2, Takahiro Sumi8, Fumio Abe9, Yuichiro Asakura8, Richard Barry5, Aparna Bhattacharya10, Ian A. Bond11, Martin Donachie12, M. Freeman12, Akihiko Fukui, Yuki Hirao8, Yoshitaka Itow9, Naoki Koshimoto8, Man Cheung Alex Li12, C. H. Ling11, Kimiaki Masuda9, Yutaka Matsubara9, Yasushi Muraki9, Masayuki Nagakane8, Kouji Ohnishi, H. Oyokawa8, Nicholas J. Rattenbury12, To. Saito13, A. Sharan12, Denis J. Sullivan14, Paul J. Tristram, Atsunori Yonehara15, Etienne Bachelet4, D. M. Bramich16, Arnaud Cassan17, Martin Dominik18, R. Figuera Jaimes18, Keith Horne18, M. Hundertmark19, Shude Mao20, Shude Mao21, Shude Mao22, Clément Ranc17, R. W. Schmidt23, Colin Snodgrass24, Iain A. Steele25, Yiannis Tsapras23, Joachim Wambsganss23, Valerio Bozza26, Valerio Bozza27, Martin Burgdorf28, U. G. Jørgensen19, S. Calchi Novati1, S. Calchi Novati26, Simona Ciceri29, Giuseppe D'Ago, Daniel F. Evans30, Frederic V. Hessman31, Tobias C. Hinse32, T.-O. Husser31, Luigi Mancini29, A. Popovas19, Markus Rabus33, Sohrab Rahvar34, Gaetano Scarpetta26, Jesper Skottfelt24, Jesper Skottfelt19, John Southworth30, Eduardo Unda-Sanzana35, Stephen T. Bryson7, Douglas A. Caldwell7, Martin Haas7, K. Larson, K. McCalmont, M. Packard36, C. A. Peterson, D. Putnam, L. H. Reedy36, Stephen J. Ross, J. Van Cleve7, Rachel Akeson1, V. Batista17, J.-P. Beaulieu17, Chas Beichman1, Geoff Bryden1, David R. Ciardi1, Andrew A. Cole37, Ch. Coutures17, Daniel Foreman-Mackey38, P. Fouqué, M. Friedmann39, Christopher R. Gelino1, Shai Kaspi39, Eamonn Kerins22, Heidi Korhonen19, Dustin Lang40, Chien-Hsiu Lee41, Charles H. Lineweaver42, D. Maoz39, J. B. Marquette17, F. Mogavero17, Jérémy Morales43, David M. Nataf42, Richard W. Pogge3, Alexandre Santerne44, Yossi Shvartzvald1, Daisuke Suzuki5, Motohide Tamura45, Patrick Tisserand17, Dun Wang6 
TL;DR: The demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations are detailed.
Abstract: K2's Campaign 9 (K2C9) will conduct a ~3.7 deg^2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax πE for ≳170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST.

73 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the discovery of a Neptune-mass free-floating planet candidate in the ultrashort OGLE-2016-BLG-1540 microlensing event.
Abstract: Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort ($t_{\\rm E}=0.320\\pm0.003$ days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of $\\theta_{\\rm E}=9.2\\pm0.5\\,\\mu$as. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to 15 au.

71 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, the authors present 39 candidate gravitational wave events from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15.00.
Abstract: We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of ~0.8, as well as events whose components could not be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational wave data alone. The range of candidate events which are unambiguously identified as binary black holes (both objects $\geq 3~M_\odot$) is increased compared to GWTC-1, with total masses from $\sim 14~M_\odot$ for GW190924_021846 to $\sim 150~M_\odot$ for GW190521. For the first time, this catalog includes binary systems with significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ~26 weeks of data (~1.5 per week) is consistent with GWTC-1.

768 citations

Journal ArticleDOI
TL;DR: Gaia Early Data Release 3 contains astrometry and photometry results for about 1.8 billion sources based on observations collected by the ESA Gaia satellite during the first 34 months of operations as discussed by the authors.
Abstract: Gaia Early Data Release 3 contains astrometry and photometry results for about 1.8 billion sources based on observations collected by the ESA Gaia satellite during the first 34 months of operations. This paper focuses on the photometric content, describing the input data, the algorithms, the processing, and the validation of the results. Particular attention is given to the quality of the data and to a number of features that users may need to take into account to make the best use of the EDR3 catalogue. The treatment of the BP and RP background has been updated to include a better estimation of the local background, and the detection of crowding effects has been used to exclude affected data from the calibrations. The photometric calibration models have also been updated to account for flux loss over the whole magnitude range. Significant improvements in the modelling and calibration of the point and line spread functions have also helped to reduce a number of instrumental effects that were still present in DR2. EDR3 contains 1.806 billion sources with G-band photometry and 1.540 billion sources with BP and RP photometry. The median uncertainty in the G-band photometry, as measured from the standard deviation of the internally calibrated mean photometry for a given source, is 0.2 mmag at magnitude G=10 to 14, 0.8 mmag at G=17, and 2.6 mmag at G=19. The significant magnitude term found in the Gaia DR2 photometry is no longer visible, and overall there are no trends larger than 1 mmag/mag. Using one passband over the whole colour and magnitude range leaves no systematics above the 1% level in magnitude in any of the bands, and a larger systematic is present for a very small sample of bright and blue sources. A detailed description of the residual systematic effects is provided. Overall the quality of the calibrated mean photometry in EDR3 is superior with respect to DR2 for all bands.

625 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a thorough review of recent Hubble constant estimates and a summary of the proposed theoretical solutions, including early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity.
Abstract: The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with enough rigor to explain multiple observations--whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors. We present a thorough review of the problem, including a discussion of recent Hubble constant estimates and a summary of the proposed theoretical solutions. Some of the models presented are formally successful, improving the fit to the data in light of their additional degrees of freedom, restoring agreement within $1-2\sigma$ between {\it Planck} 2018, using CMB power spectra data, BAO, Pantheon SN data, and R20, the latest SH0ES Team measurement of the Hubble constant ($H_0 = 73.2 \pm 1.3{\rm\,km\,s^{-1}\,Mpc^{-1}}$ at 68\% confidence level). Reduced tension might not simply come from a change in $H_0$ but also from an increase in its uncertainty due to degeneracy with additional physics, pointing to the need for additional probes. While no specific proposal makes a strong case for being highly likely or far better than all others, solutions involving early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity provide the best options until a better alternative comes along.[Abridged]

603 citations

Journal ArticleDOI
TL;DR: In this paper, the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA) have been updated to improve numerical energy conservation capabilities, including during mass changes.
Abstract: We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). RSP is a new functionality in MESAstar that models the nonlinear radial stellar pulsations that characterize RR Lyrae, Cepheids, and other classes of variable stars. We significantly enhance numerical energy conservation capabilities, including during mass changes. For example, this enables calculations through the He flash that conserve energy to better than 0.001%. To improve the modeling of rotating stars in MESA, we introduce a new approach to modifying the pressure and temperature equations of stellar structure, as well as a formulation of the projection effects of gravity darkening. A new scheme for tracking convective boundaries yields reliable values of the convective core mass and allows the natural emergence of adiabatic semiconvection regions during both core hydrogen- and helium-burning phases. We quantify the parallel performance of MESA on current-generation multicore architectures and demonstrate improvements in the computational efficiency of radiative levitation. We report updates to the equation of state and nuclear reaction physics modules. We briefly discuss the current treatment of fallback in core-collapse supernova models and the thermodynamic evolution of supernova explosions. We close by discussing the new MESA Testhub software infrastructure to enhance source code development.

601 citations