scispace - formally typeset
Search or ask a question
Author

PT Pearce

Bio: PT Pearce is an academic researcher. The author has contributed to research in topics: 11β-hydroxysteroid dehydrogenase type 1 & Receptor. The author has an hindex of 1, co-authored 1 publications receiving 1572 citations.

Papers
More filters
Journal ArticleDOI
28 Oct 1988-Science
TL;DR: The presence of the enzyme 11 beta-hydroxy-steroid dehydrogenase, which converts cortisol and corticosterone, but not aldosterone, to their 11-keto analogs, means that these analogs cannot bind to mineralocorticoid receptors.
Abstract: Mineralocorticoid receptors, both when in tissue extracts and when recombinant-derived, have equal affinity for the physiological mineralocorticoid aldosterone and for the glucocorticoids cortisol and corticosterone, which circulate at much higher concentrations than aldosterone. Such receptors are found in physiological mineralocorticoid target tissues (kidney, parotid, and colon) and in nontarget tissues such as hippocampus and heart. In mineralocorticoid target tissues the receptors are selective for aldosterone in vivo because of the presence of the enzyme 11 beta-hydroxy-steroid dehydrogenase, which converts cortisol and corticosterone, but not aldosterone, to their 11-keto analogs. These analogs cannot bind to mineralocorticoid receptors.

1,601 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation and Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals.
Abstract: In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)

2,548 citations

Journal ArticleDOI
TL;DR: Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Abstract: Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.

1,665 citations

Journal ArticleDOI
23 Feb 2001-Cell
TL;DR: Supported in part by a Specialized Center of Research in Hypertension and NIH K08 awards (to A. G. and D. S. G.) and a grant from the Howard Hughes Medical Institute.

1,628 citations

Journal ArticleDOI
TL;DR: Four mechanisms underlying resistance of the gonadal axis to stress are suggested, likely genetically determined, and their expression may depend upon a complex interaction with environmental factors.
Abstract: Environmental and social stresses have deleterious effects on reproductive function in vertebrates. Global climate change, human disturbance and endocrine disruption from pollutants are increasingly likely to pose additional stresses that could have a major impact on human society. Nonetheless, some populations of vertebrates (from fish to mammals) are able to temporarily resist environmental and social stresses, and breed successfully. A classical trade-off of reproductive success for potential survival is involved. We define five examples. (i) Aged individuals with minimal future reproductive success that should attempt to breed despite potential acute stressors. (ii) Seasonal breeders when time for actual breeding is so short that acute stress should be resisted in favour of reproductive success. (iii) If both members of a breeding pair provide parental care, then loss of a mate should be compensated for by the remaining individual. (iv) Semelparous species in which there is only one breeding period followed by programmed death. (v) Species where, because of the transience of dominance status in a social group, individuals may only have a short window of opportunity for mating. We suggest four mechanisms underlying resistance of the gonadal axis to stress. (i) Blockade at the central nervous system level, i.e. an individual no longer perceives the perturbation as stressful. (ii) Blockade at the level of the hypothalamic-pituitary-adrenal axis (i.e. failure to increase secretion of glucocorticosteroids). (iii) Blockade at the level of the hypothalamic-pituitary-gonad axis (i.e. resistance of the reproductive system to the actions of glucocorticosteroids). (iv) Compensatory stimulation of the gonadal axis to counteract inhibitory glucocorticosteroid actions. Although these mechanisms are likely genetically determined, their expression may depend upon a complex interaction with environmental factors. Future research will provide valuable information on the biology of stress and how organisms cope. Such mechanisms would be particularly insightful as the spectre of global change continues to unfold.

1,049 citations

Journal ArticleDOI
TL;DR: The results suggest that the adrenal medulla may be formed from two different cell populations: adrenergic-specific cells that require glucocorticoids for proliferation and/or survival, and a smaller noradrenergic population that differentiates normally in the absence of glucOCorticoid signaling.
Abstract: The role of the glucocorticoid receptor (GR) in glucocorticoid physiology and during development was investigated by generation of GR-deficient mice by gene targeting. GR -/- mice die within a few hours after birth because of respiratory failure. The lungs at birth are severely atelectatic, and development is impaired from day 15.5 p.c. Newborn livers have a reduced capacity to activate genes for key gluconeogenic enzymes. Feedback regulation via the hypothalamic-pituitary-adrenal axis is severely impaired resulting in elevated levels of plasma adrenocorticotrophic hormone (15-fold) and plasma corticosterone (2.5-fold). Accordingly, adrenal glands are enlarged because of hypertrophy of the cortex, resulting in increased expression of key cortical steroid biosynthetic enzymes, such as side-chain cleavage enzyme, steroid 11 beta-hydroxylase, and aldosterone synthase. Adrenal glands lack a central medulla and synthesize no adrenaline. They contain no adrenergic chromaffin cells and only scattered noradrenergic chromaffin cells even when analyzed from the earliest stages of medulla development. These results suggest that the adrenal medulla may be formed from two different cell populations: adrenergic-specific cells that require glucocorticoids for proliferation and/or survival, and a smaller noradrenergic population that differentiates normally in the absence of glucocorticoid signaling.

932 citations