scispace - formally typeset
Search or ask a question
Author

Pui-Kuen Yeung

Bio: Pui-Kuen Yeung is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Turbulence & Reynolds number. The author has an hindex of 39, co-authored 105 publications receiving 5527 citations. Previous affiliations of Pui-Kuen Yeung include Hong Kong University of Science and Technology & University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the Lagrangian statistics of velocity, acceleration, dissipation and related quantities, in isotropic turbulence, is reported, including velocity and acceleration autocorrelations and spectra; probability density functions (p.d.'s) and moments of Lagrangians velocity increments; and other velocity-gradient invariants.
Abstract: A comprehensive study is reported of the Lagrangian statistics of velocity, acceleration, dissipation and related quantities, in isotropic turbulence. High-resolution direct numerical simulations are performed on 643 and 1283 grids, resulting in Taylor-scale Reynolds numbers Rλ in the range 38-93. The low-wavenumber modes of the velocity field are forced so that the turbulence is statistically stationary. Using an accurate numerical scheme, of order 4000 fluid particles are tracked through the computed flow field, and hence time series of Lagrangian velocity and velocity gradients are obtained.The results reported include: velocity and acceleration autocorrelations and spectra; probability density functions (p.d.f.'s) and moments of Lagrangian velocity increments; and p.d.f.'s, correlation functions and spectra of dissipation and other velocity-gradient invariants. It is found that the acceleration variance (normalized by the Kolmogorov scales) increases as R½λ - a much stronger dependence than predicted by the refined Kolmogorov hypotheses. At small time lags, the Lagrangian velocity increments are distinctly non-Gaussian with, for example, flatness factors in excess of 10. The enstrophy (vorticity squared) is found to be more intermittent than dissipation, having a standard-deviation-to-mean ratio of about 1.5 (compared to 1.0 for dissipation). The acceleration vector rotates on a timescale about twice the Kolmogorov scale, while the timescales of acceleration magnitude, dissipation and enstrophy appear to scale with the Lagrangian velocity timescale.

532 citations

Journal ArticleDOI
TL;DR: Basic results in Kolmogorov similarity are examined, giving an estimate of an inertial-range universal constant and the grid resolution and Reynolds number needed to attain the requisite scaling range of time lags.
Abstract: ▪ Abstract A Lagrangian description of turbulence has unique physical advantages that are especially important in studies of mixing and dispersion. We focus on fundamental aspects, using mainly data from direct numerical simulations capable of great detail and precision when specific accuracy requirements are met. Differences between time evolution in Eulerian and Lagrangian frames illustrate the dominance of advective transport. We examine basic results in Kolmogorov similarity, giving an estimate of an inertial-range universal constant and the grid resolution and Reynolds number needed to attain the requisite scaling range of time lags. The Lagrangian statistics of passive scalars are discussed in view of current efforts in model development, with differential diffusion between multiple scalars being characterized by shorter timescales. We also note the need for new data in more complex flows and in other applications where a Lagrangian viewpoint is especially useful.

353 citations

Journal ArticleDOI
TL;DR: In this paper, a particle tracking algorithm is developed to extract accurate Lagrangian statistics from numerically calculated velocity fields, such as velocity autocorrelations, structure functions, and frequency spectra.

341 citations

Journal ArticleDOI
TL;DR: In this paper, a priori analysis showed that the subgrid stress and the sub-grid energy flux predicted by the scale similarity model, and subgrid kinetic energy model (with fixed coefficients) correlate reasonably well with exact data, while the Smagorinsky's eddy viscosity model showed relatively poor agreement.

263 citations

Journal ArticleDOI
TL;DR: Sreenivasan et al. as discussed by the authors examined data on the Kolmogorov spectrum constant in numerical simulations of isotropic turbulence, using results both from previous studies and from new direct numerical simulations over a range of Reynolds numbers at grid resolutions up to 5123.
Abstract: Motivated by a recent survey of experimental data [K.R. Sreenivasan, Phys. Fluids, 2778 (1995)], we examine data on the Kolmogorov spectrum constant in numerical simulations of isotropic turbulence, using results both from previous studies and from new direct numerical simulations over a range of Reynolds numbers (up to 240 on the Taylor scale) at grid resolutions up to 5123. It is noted that in addition to k-5/3 scaling, identification of a true inertial range requires spectral isotropy in the same wavenumber range. We found that a plateau in the compensated three-dimensional energy spectrum at k eta ~ 0.1--0.2 , commonly used to infer the Kolmogorov constant from the compensated three-dimensional energy spectrum, actually does not represent proper inertial range behavior. Rather, a proper, if still approximate, inertial range emerges at k eta ~ 0.02-0.05 when R>sub /sub sub /sub sub /sub sub /sub< ~ 0.53 for C =1.62, in excellent agreement with experiments. However the one- and three-dimensional estimates are not fully consistent, because of departures (due to numerical and statistical limitations) from isotropy of the computed spectra at low wavenumbers. The inertial scaling of structure functions in physical space is briefly addressed. Since DNS is still restricted to moderate Reynolds numbers, an accurate evaluation of the Kolmogorov constant is very difficult. We focus on providing new insights on the interpretation of Kolmogorov 1941 similarity in the DNS literature and do not consider issues pertaining to the refined similarity hypotheses of Kolmogorov.

236 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Fiber tract trajectories in coherently organized brain white matter pathways were computed from in vivo diffusion tensor magnetic resonance imaging (DT‐MRI) data, and the method holds promise for elucidating architectural features in other fibrous tissues and ordered media.
Abstract: Fiber tract trajectories in coherently organized brain white matter pathways were computed from in vivo diffusion tensor magnetic resonance imaging (DT-MRI) data. First, a continuous diffusion tensor field is constructed from this discrete, noisy, measured DT-MRI data. Then a Frenet equation, describing the evolution of a fiber tract, was solved. This approach was validated using synthesized, noisy DT-MRI data. Corpus callosum and pyramidal tract trajectories were constructed and found to be consistent with known anatomy. The method's reliability, however, degrades where the distribution of fiber tract directions is nonuniform. Moreover, background noise in diffusion-weighted MRIs can cause a computed trajectory to hop from tract to tract. Still, this method can provide quantitative information with which to visualize and study connectivity and continuity of neural pathways in the central and peripheral nervous systems in vivo, and holds promise for elucidating architectural features in other fibrous tissues and ordered media.

3,053 citations

Journal ArticleDOI
TL;DR: In this article, direct numerical simulation (DNS) of turbulent flows has been reviewed and the complementary nature of experiments and computations in turbulence research has been illustrated, as well as how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.
Abstract: ▪ Abstract We review the direct numerical simulation (DNS) of turbulent flows. We stress that DNS is a research tool, and not a brute-force solution to the Navier-Stokes equations for engineering problems. The wide range of scales in turbulent flows requires that care be taken in their numerical solution. We discuss related numerical issues such as boundary conditions and spatial and temporal discretization. Significant insight into turbulence physics has been gained from DNS of certain idealized flows that cannot be easily attained in the laboratory. We discuss some examples. Further, we illustrate the complementary nature of experiments and computations in turbulence research. Examples are provided where DNS data has been used to evaluate measurement accuracy. Finally, we consider how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.

1,572 citations

Journal ArticleDOI
TL;DR: In this article, a review of scale-invariance properties of high-Reynolds-number turbulence in the inertial range is presented, focusing on dynamic and similarity subgrid models and evaluating how well these models reproduce the true impact of the small scales on large scale physics and how they perform in numerical simulations.
Abstract: ▪ Abstract Relationships between small and large scales of motion in turbulent flows are of much interest in large-eddy simulation of turbulence, in which small scales are not explicitly resolved and must be modeled. This paper reviews models that are based on scale-invariance properties of high-Reynolds-number turbulence in the inertial range. The review starts with the Smagorinsky model, but the focus is on dynamic and similarity subgrid models and on evaluating how well these models reproduce the true impact of the small scales on large-scale physics and how they perform in numerical simulations. Various criteria to evaluate the model performance are discussed, including the so-called a posteriori and a priori studies based on direct numerical simulation and experimental data. Issues are addressed mainly in the context of canonical, incompressible flows, but extensions to scalar-transport, compressible, and reacting flows are also mentioned. Other recent modeling approaches are briefly introduced.

1,395 citations