scispace - formally typeset
Search or ask a question
Author

Puneet Ahuja

Bio: Puneet Ahuja is an academic researcher from Indian Institute of Technology Delhi. The author has contributed to research in topics: Server & Support vector machine. The author has an hindex of 3, co-authored 3 publications receiving 1176 citations.

Papers
More filters
Proceedings ArticleDOI
01 Dec 2008
TL;DR: This work investigates the design, implementation, and evaluation of a power-aware application placement controller in the context of an environment with heterogeneous virtualized server clusters, and presents the pMapper architecture and placement algorithms to solve one practical formulation of the problem: minimizing power subject to a fixed performance requirement.
Abstract: Workload placement on servers has been traditionally driven by mainly performance objectives. In this work, we investigate the design, implementation, and evaluation of a power-aware application placement controller in the context of an environment with heterogeneous virtualized server clusters. The placement component of the application management middleware takes into account the power and migration costs in addition to the performance benefit while placing the application containers on the physical servers. The contribution of this work is two-fold: first, we present multiple ways to capture the cost-aware application placement problem that may be applied to various settings. For each formulation, we provide details on the kind of information required to solve the problems, the model assumptions, and the practicality of the assumptions on real servers. In the second part of our study, we present the pMapper architecture and placement algorithms to solve one practical formulation of the problem: minimizing power subject to a fixed performance requirement. We present comprehensive theoretical and experimental evidence to establish the efficacy of pMapper.

938 citations

Proceedings ArticleDOI
07 Jun 2008
TL;DR: This work investigates the use of power management techniques for high performance applications on modern power-efficient servers with virtualization support, and shows that for HPC applications, working set size is a key parameter to take care of while placing applications on virtualized servers.
Abstract: High Performance Computing applications and platforms have been typically designed without regard to power consumption. With increased awareness of energy cost, power management is now an issue even for compute-intensive server clusters. In this work, we investigate the use of power management techniques for high performance applications on modern power-efficient servers with virtualization support. We consider power management techniques such as dynamic consolidation and usage of dynamic power range enabled by low power states on servers. We identify application performance isolation and virtualization overhead with multiple virtual machines as the key bottlenecks for server consolidation. We perform a comprehensive experimental study to identify the scenarios where applications are isolated from each other. We also establish that the power consumed by HPC applications may be application dependent, non-linear and have a large dynamic range. We show that for HPC applications, working set size is a key parameter to take care of while placing applications on virtualized servers. We use the insights obtained from our experimental study to present a framework and methodology for power-aware application placement for HPC applications.

224 citations

Journal ArticleDOI
TL;DR: The reduced twin support vector regressor (RTSVR) is proposed that uses the notion of rectangular kernels to obtain significant improvements in execution time over the twin support vectors (TSVR), thus facilitating its application to larger sized datasets.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: An architectural framework and principles for energy-efficient Cloud computing are defined and the proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS).

2,511 citations

Journal ArticleDOI
TL;DR: A competitive analysis is conducted and competitive ratios of optimal online deterministic algorithms for the single VM migration and dynamic VM consolidation problems are proved, and novel adaptive heuristics for dynamic consolidation of VMs are proposed based on an analysis of historical data from the resource usage by VMs.
Abstract: The rapid growth in demand for computational power driven by modern service applications combined with the shift to the Cloud computing model have led to the establishment of large-scale virtualized data centers. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. Dynamic consolidation of virtual machines (VMs) using live migration and switching idle nodes to the sleep mode allows Cloud providers to optimize resource usage and reduce energy consumption. However, the obligation of providing high quality of service to customers leads to the necessity in dealing with the energy-performance trade-off, as aggressive consolidation may lead to performance degradation. Because of the variability of workloads experienced by modern applications, the VM placement should be optimized continuously in an online manner. To understand the implications of the online nature of the problem, we conduct a competitive analysis and prove competitive ratios of optimal online deterministic algorithms for the single VM migration and dynamic VM consolidation problems. Furthermore, we propose novel adaptive heuristics for dynamic consolidation of VMs based on an analysis of historical data from the resource usage by VMs. The proposed algorithms significantly reduce energy consumption, while ensuring a high level of adherence to the service level agreement. We validate the high efficiency of the proposed algorithms by extensive simulations using real-world workload traces from more than a thousand PlanetLab VMs. Copyright © 2011 John Wiley & Sons, Ltd.

1,616 citations

Journal ArticleDOI
TL;DR: The results indicate that the current clouds need an order of magnitude in performance improvement to be useful to the scientific community, and show which improvements should be considered first to address this discrepancy between offer and demand.
Abstract: Cloud computing is an emerging commercial infrastructure paradigm that promises to eliminate the need for maintaining expensive computing facilities by companies and institutes alike. Through the use of virtualization and resource time sharing, clouds serve with a single set of physical resources a large user base with different needs. Thus, clouds have the potential to provide to their owners the benefits of an economy of scale and, at the same time, become an alternative for scientists to clusters, grids, and parallel production environments. However, the current commercial clouds have been built to support web and small database workloads, which are very different from typical scientific computing workloads. Moreover, the use of virtualization and resource time sharing may introduce significant performance penalties for the demanding scientific computing workloads. In this work, we analyze the performance of cloud computing services for scientific computing workloads. We quantify the presence in real scientific computing workloads of Many-Task Computing (MTC) users, that is, of users who employ loosely coupled applications comprising many tasks to achieve their scientific goals. Then, we perform an empirical evaluation of the performance of four commercial cloud computing services including Amazon EC2, which is currently the largest commercial cloud. Last, we compare through trace-based simulation the performance characteristics and cost models of clouds and other scientific computing platforms, for general and MTC-based scientific computing workloads. Our results indicate that the current clouds need an order of magnitude in performance improvement to be useful to the scientific community, and show which improvements should be considered first to address this discrepancy between offer and demand.

915 citations

Proceedings ArticleDOI
17 May 2010
TL;DR: First results of simulation-driven evaluation of heuristics for dynamic reallocation of VMs using live migration according to current requirements for CPU performance are presented, showing that the proposed technique brings substantial energy savings, while ensuring reliable QoS.
Abstract: Rapid growth of the demand for computational power by scientific, business and web-applications has led to the creation of large-scale data centers consuming enormous amounts of electrical power. We propose an energy efficient resource management system for virtualized Cloud data centers that reduces operational costs and provides required Quality of Service (QoS). Energy savings are achieved by continuous consolidation of VMs according to current utilization of resources, virtual network topologies established between VMs and thermal state of computing nodes. We present first results of simulation-driven evaluation of heuristics for dynamic reallocation of VMs using live migration according to current requirements for CPU performance. The results show that the proposed technique brings substantial energy savings, while ensuring reliable QoS. This justifies further investigation and development of the proposed resource management system.

777 citations