scispace - formally typeset
Search or ask a question
Author

Purang Abolmaesumi

Other affiliations: Queen's University
Bio: Purang Abolmaesumi is an academic researcher from University of British Columbia. The author has contributed to research in topics: Image registration & Imaging phantom. The author has an hindex of 40, co-authored 358 publications receiving 6648 citations. Previous affiliations of Purang Abolmaesumi include Queen's University.


Papers
More filters
Journal ArticleDOI
07 Aug 2002
TL;DR: A robot-assisted system for medical diagnostic ultrasound has been developed and the visual servo controller used in this system is presented, which can be enabled to automatically compensate, through robot motions, unwanted motions in the plane of the ultrasound beam.
Abstract: A robot-assisted system for medical diagnostic ultrasound has been developed by the authors. The paper presents the visual servo controller used in this system. While the ultrasound transducer is positioned by a robot, the operator, the robot controller, and an ultrasound image processor have shared control over its motion. Ultrasound image features that can be selected by the operator are recognized and tracked by a variety of techniques. Based on feature tracking, ultrasound image servoing in three axes has been incorporated in the interface and can be enabled to automatically compensate, through robot motions, unwanted motions in the plane of the ultrasound beam. The accuracy of the system is illustrated through a 3-D reconstruction of an ultrasound phantom. An Internet-based robot-assisted teleultrasound system has also been demonstrated.

306 citations

Book ChapterDOI
10 Sep 2017
TL;DR: In this paper, a CNN was trained on legacy MR images of brain and evaluated the performance of the domain-adapted network on the same task with images from a different domain, and compared the model to the surrogate scenarios where either the same trained network is used or a new network is trained from scratch on the new dataset.
Abstract: Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis and treatment. However, variations in MRI acquisition protocols result in different appearances of normal and diseased tissue in the images. Convolutional neural networks (CNNs), which have shown to be successful in many medical image analysis tasks, are typically sensitive to the variations in imaging protocols. Therefore, in many cases, networks trained on data acquired with one MRI protocol, do not perform satisfactorily on data acquired with different protocols. This limits the use of models trained with large annotated legacy datasets on a new dataset with a different domain which is often a recurring situation in clinical settings. In this study, we aim to answer the following central questions regarding domain adaptation in medical image analysis: Given a fitted legacy model, (1) How much data from the new domain is required for a decent adaptation of the original network?; and, (2) What portion of the pre-trained model parameters should be retrained given a certain number of the new domain training samples? To address these questions, we conducted extensive experiments in white matter hyperintensity segmentation task. We trained a CNN on legacy MR images of brain and evaluated the performance of the domain-adapted network on the same task with images from a different domain. We then compared the performance of the model to the surrogate scenarios where either the same trained network is used or a new network is trained from scratch on the new dataset. The domain-adapted network tuned only by two training examples achieved a Dice score of 0.63 substantially outperforming a similar network trained on the same set of examples from scratch.

233 citations

Proceedings ArticleDOI
23 May 2005
TL;DR: A genetic algorithm (GA) based approach to network intrusion detection, and the software implementation of the approach is presented, which is easier to implement while providing the flexibility to either generally detect network intrusions or precisely classify the types of attacks.
Abstract: With the rapid expansion of Internet in recent years, computer systems are facing increased number of security threats. Despite numerous technological innovations for information assurance, it is still very difficult to protect computer systems. Therefore, unwanted intrusions take place when the actual software systems are running. Different soft computing based approaches have been proposed to detect computer network attacks. This paper presents a genetic algorithm (GA) based approach to network intrusion detection, and the software implementation of the approach. The genetic algorithm is employed to derive a set of classification rules from network audit data, and the support-confidence framework is utilized as fitness function to judge the quality of each rule. The generated rules are then used to detect or classify network intrusions in a real-time environment. Unlike most existing GA-based approaches, because of the simple representation of rules and the effective fitness function, the proposed method is easier to implement while providing the flexibility to either generally detect network intrusions or precisely classify the types of attacks. Experimental results show the achievement of acceptable detection rates based on benchmark DARPA data sets on intrusions, while no other complementary techniques or relevant heuristics are applied.

152 citations

Journal ArticleDOI
TL;DR: The simulation results show that the proposed multiscale nonlinear thresholding methods for ultrasound speckle suppression outperforms several recently and the state-of-the-art techniques qualitatively and quantitatively.
Abstract: Speckle noise is an inherent nature of ultrasound images, which may have negative effect on image interpretation and diagnostic tasks. In this paper, we propose several multiscale nonlinear thresholding methods for ultrasound speckle suppression. The wavelet coefficients of the logarithm of image are modeled as the sum of a noise-free component plus an independent noise. Assuming that the noise-free component has some local mixture distribution (MD), and the noise is either Gaussian or Rayleigh, we derive the minimum mean squared error (MMSE) and the averaged maximum (AMAP) estimators for noise reduction. We use Gaussian and Laplacian MD for each noise-free wavelet coefficient to characterize their heavy-tailed property. Since we estimate the parameters of the MD using the expectation maximization (EM) algorithm and local neighbors, the proposed MD incorporates some information about the intrascale dependency of the wavelet coefficients. To evaluate our spatially adaptive despeckling methods, we use both real medical ultrasound and synthetically introduced speckle images for speckle suppression. The simulation results show that our method outperforms several recently and the state-of-the-art techniques qualitatively and quantitatively.

140 citations

Journal ArticleDOI
TL;DR: A high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF).

133 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Proceedings ArticleDOI
15 Jun 2016
TL;DR: In this article, a volumetric, fully convolutional neural network (FCN) was proposed to predict segmentation for the whole volume at one time, which can deal with situations where there is a strong imbalance between the number of foreground and background voxels.
Abstract: Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once. We introduce a novel objective function, that we optimise during training, based on Dice coefficient. In this way we can deal with situations where there is a strong imbalance between the number of foreground and background voxels. To cope with the limited number of annotated volumes available for training, we augment the data applying random non-linear transformations and histogram matching. We show in our experimental evaluation that our approach achieves good performances on challenging test data while requiring only a fraction of the processing time needed by other previous methods.

4,529 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations