scispace - formally typeset
Search or ask a question
Author

Purna Dwivedi

Bio: Purna Dwivedi is an academic researcher from Maharaja Sayajirao University of Baroda. The author has contributed to research in topics: Mycobacterium leprae & Mycobacterium lepromatosis. The author has co-authored 2 publications. Previous affiliations of Purna Dwivedi include Indian Council of Medical Research.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors showed that MLPM_5000 and its orthologues in different mycobacterial species show a much higher degree of similarity with Escherichia coli HemW (378 aa) in comparison to the E. coli HemN (457 aa).
Abstract: The genome of a newly identified leprosy causing bacillus Mycobacterium lepromatosis was sequenced in 2015 wherein a gene MLPM_5000 was detected whose corresponding sequences are missing in its close relative Mycobacterium leprae, the well-known causal agent of leprosy. Thus MLPM_5000 is considered to be a specific genomic locus for differentiating M. lepromatosis from M. leprae. The locus was annotated as HemN (Coproporphyrinogen III oxidase) based on the available annotations in other mycobacterial species. However, we noticed that the MLPM_5000 and its orthologues in different mycobacterial species show a much higher degree of similarity with Escherichia coli HemW (378 aa) in comparison to the E. coli HemN (457 aa). Additionally, the fourth cysteine of the characteristic CX3CX2CXC motif of the E. coli HemN is replaced by a phenylalanine in the M. lepromatosis MLPM_5000 and its mycobacterial orthologues, which is a hallmark of heme chaperone protein HemW in E. coli and other species. Phylogenetic analysis of MLPM_5000 and its mycobacterial orthologues also showed that these proteins form a divergent phylogenetic clade with the HemW proteins of other species such as Escherichia coli and Lactococcus lactis. Further, Molecular Dynamics simulation studies also predicted that the residues of conserved HNXXYW motif of the MLPM_5000 may have a role in binding to heme part of the host hemoglobin, thereby suggesting it to be a HemW instead of HemN. Altogether, this work shows that MLPM_5000 and its mycobacterial orthologues are highly unlikely to be HemN. Therefore, the current annotations of mycobacterial HemN sequences should be corrected to heme chaperone 'HemW' in various protein databases. The study not only corrects the mis-annotation but also provides a new perspective in the context of evolutionary history of M. leprae and M. lepromatosis such as lack of HemW in M. leprae may explain some of the variations in the virulence between the two pathogens.

4 citations

Journal ArticleDOI
TL;DR: In this paper, a polymerase chain reaction-based method was used to detect and distinguish Mycobacterium leprae and Mycococcus lepromatosis using a single set of primers.
Abstract: We have developed a polymerase chain reaction-based method to detect and distinguish Mycobacterium leprae and Mycobacterium lepromatosis using a single set of primers based on a 45-bp difference in the amplicon size of their rpoT gene. This method can also help in detecting the cases of co-infection in a single experiment.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphrinogen IX, a key intermediate in heme biosynthesis as discussed by the authors .
Abstract: HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.

8 citations

Journal ArticleDOI
TL;DR: The complete genome sequence of M. lepromatosis was constructed and annotated and new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis were found.
Abstract: Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. ABSTRACT Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. We report construction and analyses of the complete genome sequence of M. lepromatosis FJ924. The genome contained 3,271,694 nucleotides to encode 1,789 functional genes and 1,564 pseudogenes. It shared 1,420 genes and 885 pseudogenes (71.4%) with M. leprae but differed in 1,281 genes and pseudogenes (28.6%). In phylogeny, the leprosy bacilli started from a most recent common ancestor (MRCA) that diverged ~30 million years ago (Mya) from environmental organism Mycobacterium haemophilum. The MRCA then underwent reductive evolution with pseudogenization, gene loss, and chromosomal rearrangements. Analysis of the shared pseudogenes estimated the pseudogenization event ~14 Mya, shortly before species bifurcation. Afterwards, genomic changes occurred to lesser extent in each species. Like M. leprae, four major types of highly repetitive sequences were detected in M. lepromatosis, contributing to chromosomal rearrangements within and after MRCA. Variations in genes and copy numbers were noted, such as three copies of the gene encoding bifunctional diguanylate cyclase/phosphodiesterase in M. lepromatosis, but single copy in M. leprae; 6 genes encoding the TetR family transcriptional regulators in M. lepromatosis, but 11 such genes in M. leprae; presence of hemW gene in M. lepromatosis, but absence in M. leprae; and others. These variations likely aid unique pathogenesis, such as diffuse lepromatous leprosy associated with M. lepromatosis, while the shared genomic features should explain the common pathogenesis of dermatitis and neuritis in leprosy. Together, these findings and the genomic data of M. lepromatosis may facilitate future research and care for leprosy. IMPORTANCE Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. The results afford new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis. The availability of the complete M. lepromatosis genome may prove to be useful for future research and care for the infection.

4 citations

Journal ArticleDOI
TL;DR: In this article , a chaperone-like protein, named CgdH2, was identified in C. jejuni that binds heme with a dissociation constant of 4.9 ± 1.0 µM, a binding that is impaired upon mutation of residues histidine 45 and 133.
Abstract: Intracellular heme formation and trafficking are fundamental processes in living organisms. Three biogenesis pathways are used by bacteria and archaea to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro’gen III). In this work, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro’gen III into heme. We show that in this organism operates the protoporphyrin-dependent pathway (PPD pathway), in which the last reaction is the incorporation of ferrous iron into the porphyrin ring by the ferrochelatase enzyme. In general, following this final reaction, little is known about how the formed heme b reaches the target proteins. In particular, the chaperons that are thought to be required to traffic heme for incorporation into hemeproteins to avoid the cytotoxicity associated to free heme, remain largely unidentified. We identified in C. jejuni a chaperon-like protein, named CgdH2, that binds heme with a dissociation constant of 4.9 ± 1.0 µM, a binding that is impaired upon mutation of residues histidine 45 and 133. We show that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, which should enable for the observed transfer of heme from ferrochelatase to CgdH2. Phylogenetic analysis revealed that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is a novel chaperone and the first protein identified as an acceptor of the intracellularly formed heme, thus enlarging our understanding of bacterial heme homeostasis.
Journal ArticleDOI
TL;DR: The purpose of this review is to improve the understanding of the outcomes of current tests and technologies used in leprosy diagnosis and to emphasize critical aspects concerning the detection of leproSy bacilli.
Abstract: Leprosy is a public health issue, and early detection is critical to avert disability. Despite the global attempt to eradicate this disease as a public health problem, it remains an important cause of global neurological disability. India, Brazil and Indonesia share more than 70% of the cases. The reduction of new cases is a priority in the WHO global strategy 2021-2030 which aims to reduce disease transmission in the community by diagnosing cases and identifying subclinical infection. The clinical manifestations of leprosy range from a few to several lesions. The identification remains difficult due to the limited sensitivity of traditional approaches based on bacillary counts of skin smears and histology. To aid in the diagnosis of this disease, molecular biology, and biotechnological technologies have been applied, each with its own set of benefits and downsides despite providing an essential tool to validate the clinical diagnosis of leprosy. Because of this, it is strongly recognized that specific, inexpensive point of care technologies should be developed, particularly to identify asymptomatic M. leprae infections or leprosy nearer to the suspected cases seeking medical attention. Thus, this review will provide an overview of the advancements in leprosy diagnosis over the world. The purpose of this review is to improve our understanding of the outcomes of current tests and technologies used in leprosy diagnosis and to emphasize critical aspects concerning the detection of leprosy bacilli.