scispace - formally typeset
Search or ask a question
Author

Pushpendra Singh

Bio: Pushpendra Singh is an academic researcher from New Jersey Institute of Technology. The author has contributed to research in topics: Particle & Dielectrophoresis. The author has an hindex of 25, co-authored 93 publications receiving 2314 citations. Previous affiliations of Pushpendra Singh include Los Alamos National Laboratory & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a Lagrange-multiplier-based fictitious-domain method (DLM) for the direct numerical simulation of rigid particulate flows in a Newtonian fluid was presented, where the flow in the particle domain is constrained to be a rigid body motion by using a well-chosen field of Lagrange multipliers.

374 citations

Journal ArticleDOI
TL;DR: In this article, a finite-element code based on the level-set method is developed for simulating the motion of viscoelastic two-phase flow problems, which is a generalization of the finite-difference approach described in [1, 4] for computing solutions to two phase problems of inviscid and viscous fluids.

149 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical package is developed to simulate particle motions in fluid interfaces, and the particles are moved in a direct simulation respecting the fundamental equations of motion of fluids and solid particles without the use of models.
Abstract: We have developed a numerical package to simulate particle motions in fluid interfaces. The particles are moved in a direct simulation respecting the fundamental equations of motion of fluids and solid particles without the use of models. The fluid–particle motion is resolved by the method of distributed Lagrange multipliers and the interface is moved by the method of level sets. The present work fills a gap since there are no other theoretical methods available to describe the nonlinear fluid dynamics of capillary attraction.Two different cases of constrained motions of floating particles are studied here. In the first case, we study motions of floating spheres under the constraint that the contact angle is fixed by the Young–Dupr´e law; the contact line must move when the contact angle is fixed. In the second case, we study motions of disks (short cylinders) with flat ends in which the contact line is pinned at the sharp edge of the disk; the contact angle must change when the disks move and this angle can change within the limits specified by the Gibbs extension to the Young–Dupre law. The fact that sharp edged particles cling to interfaces independent of particle wettability is not fully appreciated and needs study.The numerical scheme presented here is at present the only one which can move floating particles in direct simulation. We simulate the evolution of single heavier-than-liquid spheres and disks to their equilibrium depth and the evolution to clusters of two and fours spheres and two disks under lateral forces, collectively called capillary attraction. New experiments by Wang, Bai & Joseph on the equilibrium depth of floating disks pinned at the edge are presented and compared with analysis and simulations.

144 citations

Journal ArticleDOI
TL;DR: In this paper, a distributed Lagrange multiplier/fictitious domain method (DLM) is developed for simulating the motion of rigid particles suspended in the Oldroyd-B fluid.
Abstract: A distributed Lagrange multiplier/fictitious domain method (DLM) is developed for simulating the motion of rigid particles suspended in the Oldroyd-B fluid. This method is a generalization of the one described in [R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, Int. J. Multiphase Flows 25 (1998) 755–794] where the motion of particles suspended in a Newtonian fluid was simulated. In our implementation of the DLM method, the fluid–particle system is treated implicitly using a combined weak formulation in which the forces and moments between the particles and fluid cancel. The governing equations for the Oldroyd-B liquid are solved everywhere, including inside the particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange multipliers. We use the Marchuk–Yanenko operator-splitting technique to decouple the difficulties associated with the incompressibility constraint, nonlinear convection and viscoelastic terms. The constitutive equation is solved using a scheme that guarantees the positive definiteness of the configuration tensor, while the convection term in the constitutive equation is discretized using a third-order upwinding scheme. The nonlinear convection problem is solved using a least square conjugate gradient algorithm, and the Stokes-like problem is solved using a conjugate gradient algorithm. The code is verified performing a convergence study to show that the results are independent of the mesh and time step sizes. Our simulations show that, when particles are dropped in a channel, and the viscoelastic Mach number (M) is less than 1 and the elasticity number (E) is greater than 1, the particles chain along the flow direction; this agrees with the results presented in [P.Y. Huang, H.H. Hu, D.D. Joseph, J. Fluid Mech. 362 (1998) 297–325]. In our simulations of the fluidization of 102 particles in a two-dimensional bed, we find that the particles near the channel walls form chains that are parallel to the walls, but the distribution of particles away from the walls is relatively random.

107 citations

Journal ArticleDOI
TL;DR: The results of the simulations presented in this paper show that uniform electric fields the evolution of the particle structures depends on the ratio of electrostatic particle‐particle interactions and Brownian forces.
Abstract: A numerical scheme based on the distributed Lagrange multiplier method (DLM) is used to study the motion of nano-sized particles of dielectric suspensions subjected to uniform and nonuniform electric fields. Particles are subjected to both electrostatic and hydrodynamic forces, as well as Brownian motion. The results of the simulations presented in this paper show that uniform electric fields the evolution of the particle structures depends on the ratio of electrostatic particle-particle interactions and Brownian forces. When this ratio is of the order of 100 or greater, particles form stable chains and columns, whereas when it is of the order of 10 or smaller the particle distribution is random. For the nonuniform electric field cases considered in this paper, the relative magnitude of Brownian forces is in the range such that it does not influence the eventual collection of particles by dielectrophoresis and the particular locations where the particles are collected. However, Brownian motion is observed to influence the transient particle trajectories. The deviation of the particle trajectories compared to those determined by the electrostatic and hydrodynamic forces alone is characterized by the ratio of Brownian and dielectrophoretic forces.

103 citations


Cited by
More filters
01 May 2005

2,648 citations

Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: This paper reviews the work in this area with special reference to the discrete element method and associated theoretical developments, and covers three important aspects: models for the calculation of the particle–particle and particle–fluid interaction forces, coupling of discrete elements method with computational fluid dynamics to describe particle-fluid flow, and the theories for linking discrete to continuum modelling.

1,563 citations

Journal ArticleDOI
TL;DR: In this article, an improved method for computing incompressible viscous flow around suspended rigid particles using a fixed and uniform computational grid is presented. But the main idea is to incorporate Peskin's regularized delta function approach into a direct formulation of the fluid-solid interaction force in order to allow for a smooth transfer between Eulerian and Lagrangian representations.

1,399 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a multi-purpose CFD-DEM framework to simulate coupled fluid-granular systems, where the motion of the particles is resolved by means of the Discrete Element Method (DEM), and the Computational Fluid Dynamics (CFD) method is used to calculate the interstitial fluid flow.
Abstract: We present a multi–purpose CFD–DEM framework to simulate coupled fluid–granular systems. The motion of the particles is resolved by means of the Discrete Element Method (DEM), and the Computational Fluid Dynamics (CFD) method is used to calculate the interstitial fluid flow. We first give a short overview over the DEM and CFD–DEM codes and implementations, followed by elaborating on the numerical schemes and implementation of the CFD–DEM coupling approach, which comprises two fundamentally different approaches, the unresolved CFD–DEM and the resolved CFD–DEM using an Immersed Boundary (IB) method. Both the DEM and the CFD–DEM approach are successfully tested against analytics as well as experimental data.

1,199 citations