scispace - formally typeset
Search or ask a question
Author

Puttinan Meepowpan

Bio: Puttinan Meepowpan is an academic researcher from Chiang Mai University. The author has contributed to research in topics: Ring-opening polymerization & Polymerization. The author has an hindex of 15, co-authored 74 publications receiving 659 citations. Previous affiliations of Puttinan Meepowpan include Mahidol University & Thailand National Science and Technology Development Agency.


Papers
More filters
Journal ArticleDOI
TL;DR: The plant species screened in this research was recorded by several indigenous medicinal practitioners as antiparasitic, anticancer and/or related activities to the human major organ system.

108 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic activity of g-C3N4/BiOBr (CB) heterojunction in the oxidative C-N coupling of benzylamine under atmospheric air using cool white LED light was reported for the first time.

63 citations

Journal ArticleDOI
TL;DR: The results show that the principal mechanism by which this chitosan polysulfate exhibits anticoagulant activity is mediated through heparin cofactor II and is dependent on polysaccharide molecular weight.

55 citations

Journal ArticleDOI
TL;DR: Both forms of the enantiomerically pure methylenolactocin, nephrosterinic and protolichesterinic acid have been synthesized via tandem aldol-lactonization reactions from corresponding optically active itaconate-anthracene adducts as discussed by the authors.
Abstract: Both forms of the enantiomerically pure methylenolactocin, nephrosterinic and protolichesterinic acid have been synthesized via tandem aldol–lactonization reactions from corresponding optically active itaconate–anthracene adducts.

35 citations

Journal ArticleDOI
TL;DR: In this article, the coordination-insertion mechanism of ring-opening polymerizations (ROP) was investigated using hybrid density functional theory at the B3LYP level with a mixed basis set.

30 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

01 Jan 2017
TL;DR: In this paper, the authors reported the preparation, structural characterization, and detailed lactide polymerization behavior of a new Zn(II) alkoxide complex, (L(1)ZnOEt)(2) (L (1) = 2,4-di-tert-butyl-6-{[(2'-dimethylaminoethyl)methylamin]methyl}phenolate).
Abstract: We report the preparation, structural characterization, and detailed lactide polymerization behavior of a new Zn(II) alkoxide complex, (L(1)ZnOEt)(2) (L(1) = 2,4-di-tert-butyl-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenolate). While an X-ray crystal structure revealed the complex to be dimeric in the solid state, nuclear magnetic resonance and mass spectrometric analyses showed that the monomeric form L(1)ZnOEt predominates in solution. The polymerization of lactide using this complex proceeded with good molecular weight control and gave relatively narrow molecular weight distribution polylactide, even at catalyst loadings of <0.1% that yielded M(n) as high as 130 kg mol(-)(1). The effect of impurities on the molecular weight of the product polymers was accounted for using a simple model. Detailed kinetic studies of the polymerization reaction enabled integral and nonintegral orders in L(1)ZnOEt to be distinguished and the empirical rate law to be elucidated, -d[LA]/dt = k(p)[L(1)ZnOEt][LA]. These studies also showed that L(1)ZnOEt polymerizes lactide at a rate faster than any other Zn-containing system reported previously. This work provides important mechanistic information pertaining to the polymerization of lactide and other cyclic esters by discrete metal alkoxide complexes.

480 citations

01 Apr 2010
TL;DR: Polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices for up to 3-4 years as discussed by the authors.
Abstract: During the resorbable-polymer-boom of the 1970s and 1980s, polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices. Its popularity was soon superseded by faster resorbable polymers which had fewer perceived disadvantages associated with long term degradation (up to 3-4 years) and intracellular resorption pathways; consequently, PCL was almost forgotten for most of two decades. Recently, a resurgence of interest has propelled PCL back into the biomaterials-arena. The superior rheological and viscoelastic properties over many of its aliphatic polyester counterparts renders PCL easy to manufacture and manipulate into a large range of implants and devices. Coupled with relatively inexpensive production routes and FDA approval, this provides a promising platform for the production of longer-term degradable implants which may be manipulated physically, chemically and biologically to possess tailorable degradation kinetics to suit a specific anatomical site. This review will discuss the application of PCL as a biomaterial over the last two decades focusing on the advantages which have propagated its return into the spotlight with a particular focus on medical devices, drug delivery and tissue engineering.

480 citations

Journal ArticleDOI
TL;DR: Derivatives of QHS, such as dihydroqinghaosu, artemether, and the water-soluble sodium artesunate, appear to be more potent than QHS itself, and offer promise as a totally new class of antimalarials.
Abstract: The herb Artemisia annua has been used for many centuries in Chinese traditional medicine as a treatment for fever and malaria. In 1971, Chinese chemists isolated from the leafy portions of the plant the substance responsible for its reputed medicinal action. This compound, called qinghaosu (QHS, artemisinin), is a sesquiterpene lactone that bears a peroxide grouping and, unlike most other antimalarials, lacks a nitrogen-containing heterocyclic ring system. The compound has been used successfully in several thousand malaria patients in China, including those with both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Derivatives of QHS, such as dihydroqinghaosu, artemether, and the water-soluble sodium artesunate, appear to be more potent than QHS itself. Sodium artesunate acts rapidly in restoring to consciousness comatose patients with cerebral malaria. Thus QHS and its derivatives offer promise as a totally new class of antimalarials.

389 citations