scispace - formally typeset
Search or ask a question
Author

Qazi Fariduddin

Bio: Qazi Fariduddin is an academic researcher from Aligarh Muslim University. The author has contributed to research in topics: Nitrate reductase & Proline. The author has an hindex of 32, co-authored 68 publications receiving 3958 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Aqueous solutions of salicylic acid (SA) were applied to the foliage of 30-d-old plants of mustard (Brassica juncea Czern & Coss cv. Varuna).
Abstract: Aqueous solutions of salicylic acid (SA) were applied to the foliage of 30-d-old plants of mustard (Brassica juncea Czern & Coss cv. Varuna). The plants sprayed with the lowest used concentration (10−5 M) of SA were healthier than those sprayed with water only or with higher concentrations of SA (10−4 or 10−3 M). 60-d-old plants possessed 8.4, 9.8, 9.3, 13.0 and 18.5 % larger dry mass, net photosynthetic rate, carboxylation efficiency, and activities of nitrate reductase and carbonic anhydrase over the control, respectively. Moreover, the number of pods and the seed yield increased by 13.7 and 8.4 % over the control.

442 citations

Journal ArticleDOI
TL;DR: This review article encompasses the dual behavior of Ni in plants emphasizing its systemic partitioning, essentiality and ill effects and the core mechanism of molecules involved is still elusive, and varies among the plants.
Abstract: Nickel even though recognized as a trace element, its metabolism is very decisive for certain enzyme activities, maintaining proper cellular redox state and various other biochemical, physiological and growth responses. Study of the aspects related with uptake, transport and distributive localization of Ni is very important in various cellular metabolic processes particularly under increased nitrogen metabolism. This review article, in core, encompasses the dual behavior of Ni in plants emphasizing its systemic partitioning, essentiality and ill effects. However, the core mechanism of molecules involved and the successive physiological conditions required starting from the soil absorption, neutralization and toxicity generated is still elusive, and varies among the plants.

332 citations

Journal ArticleDOI
TL;DR: It is concluded that the elevated level of proline in association with antioxidant system, at least in part, was responsible for the amelioration of Al stress in mung bean seedlings.

281 citations

BookDOI
TL;DR: This review summarizes the toxic symptoms of Cd in plants (i.e. growth retardation, alterations of photosynthesis, stomatal movement, enzymatic activities, water relations, interferences with mineral uptake, protein metabolism, membrane functioning, etc.) but also includes the mechanisms of cadmium uptake, translocation and deposition.
Abstract: Of all the non-essential heavy metals, cadmium (Cd) is perhaps the metal which has attracted the most attention in soil science and plant nutrition due to its potential toxicity to humans, and also its relative mobility in the soil-plant system. This review summarizes the toxic symptoms of Cd in plants (i.e. growth retardation, alterations of photosynthesis, stomatal movement, enzymatic activities, water relations, interferences with mineral uptake, protein metabolism, membrane functioning, etc.) but also includes the mechanisms of cadmium uptake, translocation and deposition. Moreover, it also throws light on chelation, including identification of Cd ligands present in cytosol and vascular tissue. Cadmium-induced oxidative stress is also considered as one of the most widely studied topics in this review.

241 citations

Journal ArticleDOI
TL;DR: In this article, a study of Lycopersicon esculentum L. cv. K-25 was subjected to water stress by withholding water for 10 days at 20 (WS I) and 30 (WS II) days after sowing (DAS).
Abstract: Plants of Lycopersicon esculentum L. cv. K-25 were subjected to water stress by withholding water for 10 days at 20 (WS I) and 30 (WS II) days after sowing (DAS). Seedlings were sprayed with double distilled water (DDW) or 10−5M salicylic acid (SA) at 45 DAS. The water stress at earlier stage of growth (20 day stage) was more inhibitory as compared to the later stage (30 day stage). The plants exposed to water stress exhibited a significant (p<0.05) decline in photosynthetic parameters, membrane stability index (MSI), leaf water potential, activity of nitrate reductase (NR), carbonic anhydrase (CA), chlorophyll and relative water content (RWC). A follow-up treatment with SA protected against the stress generated by water and significantly improved the above parameters. However, proline content and antioxidant enzymes increased under drought as well as under SA treatments.

231 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Abstract: In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

1,122 citations

Journal ArticleDOI
TL;DR: Evidence supporting the growth-defense tradeoff concept is addressed, as well as known interactions between defense signaling and growth signaling, which should provide a foundation for the development of breeding strategies to maximize crop yield to meet rising global food and biofuel demands.

1,035 citations

Journal ArticleDOI
TL;DR: This review has documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Abstract: Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.

1,028 citations

Journal ArticleDOI
TL;DR: Various intrinsic biosynthetic pathways, interplay of SA and MeSA, its long distance transport and signaling, and the effect of exogenous application of SA on bio-productivity, growth, photosynthesis, plant water relations, various enzyme activities and its effect on the plants exposed to various biotic and abiotic stresses are discussed.

998 citations

Journal ArticleDOI
TL;DR: This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as therole of plant hormones.
Abstract: Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It have been reported in several studies that counterbalancing toxicity, due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics etc. have assisted in the characterization of metabolites, transcription factors, stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity, covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance at strategies adopted by metal accumulating plants also known as “metallophytes”.

820 citations