scispace - formally typeset
Search or ask a question
Author

Qi Xie

Other affiliations: Ghent University, Fudan University
Bio: Qi Xie is an academic researcher from ASM International. The author has contributed to research in topics: Atomic layer deposition & Layer (electronics). The author has an hindex of 34, co-authored 98 publications receiving 3412 citations. Previous affiliations of Qi Xie include Ghent University & Fudan University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an energetic model was proposed to explain the different growth behaviors with different precursors and density functional theory (DFT) calculation was made to find the intermediate product stability.
Abstract: Atomic layer deposition (ALD) of TiO2 thin films using Ti isopropoxide and tetrakis-dimethyl-amido titanium (TDMAT) as two kinds of Ti precursors and water as another reactant was investigated. TiO2 films with high purity can be grown in a self-limited ALD growth mode by using either Ti isopropoxide or TDMAT as Ti precursors. Different growth behaviors as a function of deposition temperature were observed. A typical growth rate curve-increased growth rate per cycle (GPC) with increasing temperatures was observed for the TiO2 film deposited by Ti isopropoxide and H2O, while surprisingly high GPC was observed at low temperatures for the TiO2 film deposited by TDMAT and H2O. An energetic model was proposed to explain the different growth behaviors with different precursors. Density functional theory (DFT) calculation was made. The GPC in the low temperature region is determined by the reaction energy barrier. From the experimental results and DFT calculation, we found that the intermediate product stability ...

224 citations

Patent
12 Jul 2013
TL;DR: In this paper, improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed, which includes providing a highmobile semiconductor surface to a chamber of a reactor and exposing the high-mobile semiconductor surfaces to a gas-phase sulfur precursor to passivate the surface.
Abstract: Improved methods and systems for passivating a surface of a high-mobility semiconductor and structures and devices formed using the methods are disclosed. The method includes providing a high-mobility semiconductor surface to a chamber of a reactor and exposing the high-mobility semiconductor surface to a gas-phase sulfur precursor to passivate the high-mobility semiconductor surface.

162 citations

Journal ArticleDOI
TL;DR: In this paper, both thermal and plasma enhanced processes were studied, with N"2 and NH"3 as reactive gases, and a growth rate of 0.06nm/cycle and a resistivity of 53x10 cm were achieved.

137 citations

Journal ArticleDOI
TL;DR: In this article, a review of the most commonly used germanium surface passivation methods (e.g., epi-Si passivation, surface oxidation and/or nitridation, and S-passivation) with various high-k dielectrics is presented.
Abstract: Due to its high intrinsic mobility, germanium (Ge) is a promising candidate as a channel material (offering a mobility gain of approximately??2 for electrons and??4 for holes when compared to conventional Si channels) However, many issues still need to be addressed before Ge can be implemented in high-performance field-effect-transistor (FET) devices One of the key issues is to provide a high-quality interfacial layer, which does not lead to substantial drive current degradation in both low equivalent oxide thickness and short channel regime In recent years, a wide range of materials and processes have been investigated to obtain proper interfacial properties, including different methods for Ge surface passivation, various high-k dielectrics and metal gate materials and deposition methods, and different post-deposition annealing treatments It is observed that each process step can significantly affect the overall metal?oxide?semiconductor (MOS)-FET device performance In this review, we describe and compare combinations of the most commonly used Ge surface passivation methods (eg epi-Si passivation, surface oxidation and/or nitridation, and S-passivation) with various high-k dielectrics In particular, plasma-based processes for surface passivation in combination with plasma-enhanced atomic layer deposition for high-k depositions are shown to result in high-quality MOS structures To further improve properties, the gate stack can be annealed after deposition The effects of annealing temperature and ambient on the electrical properties of the MOS structure are also discussed

132 citations

Patent
Suvi Haukka1, Fu Tang1, Michael Eugene Givens1, Jan William Maes1, Qi Xie1 
18 Dec 2013
TL;DR: In this paper, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor phase metal reactant and a second vapor phase sulfur reactant.
Abstract: In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.

124 citations


Cited by
More filters
Patent
13 Aug 2014
TL;DR: In this paper, the authors presented a heterocyclic compound and an organic light-emitting device including the HOC compound, which have high efficiency, low driving voltage, high luminance and long lifespan.
Abstract: The present invention provides a heterocyclic compound and an organic light-emitting device including the heterocyclic compound. The organic light-emitting devices using the heterocyclic compounds have high-efficiency, low driving voltage, high luminance and long lifespan.

1,346 citations

Journal ArticleDOI
04 Mar 2016
TL;DR: The reactive force field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties as mentioned in this paper, but it is often too computationally intense for simulations that consider the full dynamic evolution of a system.
Abstract: The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFF method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. This article provides an overview of the development, application, and future directions of the ReaxFF method.

1,239 citations

Journal ArticleDOI
TL;DR: Puurunen et al. as discussed by the authors summarized the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD.
Abstract: Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas–solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic–organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

1,160 citations

Journal ArticleDOI
TL;DR: Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A-level resolution in which a plasma is employed during one step of the cyclic deposition process.
Abstract: Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processing conditions and for a wider range of material properties compared with the conventional thermally-driven ALD method. Due to the continuous miniaturization in the microelectronics industry and the increasing relevance of ultra-thin films in many other applications, the deposition method has rapidly gained popularity in recent years, as is apparent from the increased number of articles published on the topic and plasma-assisted ALD reactors installed. To address the main differences between plasma-assisted ALD and thermal ALD, some basic aspects related to processing plasmas are presented in this review article. The plasma species and their role in the surface chemistry are addressed and different equipment configurations, including radical-enhanced ALD, direct plasma ALD, and remote plasma ALD, are described. The benefits and challenges provided by the use of a plasma step are presented and it is shown that the use of a plasma leads to a wider choice in material properties, substrate temperature, choice of precursors, and processing conditions, but that the processing can also be compromised by reduced film conformality and plasma damage. Finally, several reported emerging applications of plasma-assisted ALD are reviewed. It is expected that the merits offered by plasma-assisted ALD will further increase the interest of equipment manufacturers for developing industrial-scale deposition configurations such that the method will find its use in several manufacturing applications.

690 citations